版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省潍坊市中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为(
)A.
B.
C.
D.
参考答案:D2.抛物线的焦点坐标为(
)A.
B.C.D.参考答案:A略3.若在上是减函数,则b的取值范围是(
)A.
B.
C.
D.参考答案:C略4.在△ABC中,,则A等于(
)A.30O
B.60O
C.45O
D.120O参考答案:D略5.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A. B.8 C. D.16参考答案:B【考点】K8:抛物线的简单性质;K6:抛物线的定义.【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选B.6.执行如图的程序框图,如果输入的N的值是6,那么输出的p的值是()A.15 B.105 C.120 D.720参考答案:B【考点】程序框图.【专题】计算题;图表型.【分析】根据题中的流程图,依次求出p和k的值,根据k的值判断是否符合判断框中的条件,若不符合,则结束运行,输出p.【解答】解:输入N=6,则k=1,p=1,第一次运行p=1×1=1,此时k=1<6,第二次运行k=1+2=3,p=1×3=3;第三次运行k=3+2=5,p=3×5=15;第四次运行k=5+2=7,P=15×7=105;不满足条件k<6,程序运行终止,输出P值为105,故选B.【点评】本题考查了循环结构的程序框图,利用程序框图中框图的含义运行解答.7.已知平面上三点A、B、C满足,,,则的值等于
(
)A.25
B.24
C.-25
D.-24参考答案:C8.已知直线ax+y﹣1=0与直线x+ay﹣1=0互相垂直,则a=()A.1或﹣1 B.1 C.﹣1 D.0参考答案:D考点: 直线的一般式方程与直线的垂直关系.专题: 直线与圆.分析: 直接由两直线垂直得到两直线系数间的关系,然后求解关于a的方程得答案.解答: 解:∵直线ax+y﹣1=0与直线x+ay﹣1=0互相垂直,∴1×a+1×a=0,即2a=0,解得:a=0.故选:D.点评: 本题考查了直线的一般式方程与直线垂直的关系,关键是对条件的记忆与运用,是基础题.9.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是(
)A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合参考答案:D10.若复数,则(
)A. B. C. D.参考答案:C,故选C.二、填空题:本大题共7小题,每小题4分,共28分11.若复数z=
()是纯虚数,则=
;参考答案:略12.已知数列数列前n项的和为______.参考答案:
15.;
16.
13.已知椭圆的两个焦点是F1、F2,满足=0的点M总在椭圆的内部,则椭圆的离心率的取值范围是
参考答案:略14.设x,y满足约束条件,则的最小值为_______.参考答案:【分析】先画出可行域,根据表示可行域内的点到定点的距离的平方,即可求出最小值。【详解】作出不等式组表示的可行域为一个三角形区域(包括边界),表示可行域内的点到定点的距离的平方,由图可知,该距离的最小值为点到直线的距离,故.【点睛】本题考查线性规划,属于基础题。15.已知抛物线y2=4x与经过该抛物线焦点的直线l在第一象限的交点为A,A在y轴和准线上的投影分别为点B,C,=2,则直线l的斜率为.参考答案:2【考点】抛物线的简单性质.【分析】利用=2,求出A的坐标,利用斜率公式求出直线l的斜率.【解答】解:设A的横坐标为x,则∵=2,BC=1,∴AB=2,∴A(2,2),∵F(1,0),∴直线l的斜率为=2,故答案为:2.16.如图,在三棱锥P﹣ABC中,PA=PB=PC=BC,且∠BAC=,则PA与底面ABC所成角为.参考答案:【考点】MI:直线与平面所成的角.【分析】P在底面的射影E是△ABC的外心,故E是BC的中点,三角形PAE中,求出三边边长、tan∠PAE的值,即可得到PA与底面ABC所成角的大小.【解答】解:∵PA=PB=PC,∴P在底面的射影E是△ABC的外心,又故E是BC的中点,所以PA与底面ABC所成角为∠PAE,等边三角形PBC中,PE=,直角三角形ABC中,AE=BC=,又PA=1,∴三角形PAE中,tan∠PAE==∴∠PAE=,则PA与底面ABC所成角为.17.已知直线l:+=1,M是直线l上的一个动点,过点M作x轴和y轴的垂线,垂足分别为A,B,点P是线段AB的靠近点A的一个三等分点,点P的轨迹方程为________________.参考答案:3x+8y-8=0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.点P在椭圆上,求点P到直线的最大距离和最小距离。参考答案:19.(本小题满分10分)选修4-5:不等式选修在平面直角坐标系中,定义点理工、之间的直角距离为,点(l)若,求x的取值范围;(2)当时,不等式恒成立,求t的最小值.参考答案:20.从1到9的九个数字中取三个偶数四个奇数,试问:①、能组成多少个没有重复数字的七位数?②、上述七位数中三个偶数排在一起的有几个?③、在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?④、在①中任意两偶然都不相邻的七位数有几个?.参考答案:解:①分步完成:第一步在4个偶数中取3个,可有种情况;第二步在5个奇数中取4个,可有种情况;第三步3个偶数,4个奇数进行排列,可有种情况。所以符合题意的七位数有个.…
②上述七位数中,三个偶数排在一起的有个.……③上述七位数中,3个偶数排在一起,4个奇数也排在一起的有个.…④上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空档,共有个.略21.(本题满分12分)阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.
应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;参考答案:(1),
而,当且仅当时取到等号,则,即的最小值为.(2),
而,,当且仅当,即时取到等号,则,所以函数的最小值为.
22.过椭圆Γ:+=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)由题意列关于a,c的方程组,求解方程组的a,c的值,由b2=a2﹣c2求得b的值,则椭圆方程可求;(Ⅱ)假设满足条件的圆存在,设出圆的方程,分直线PQ的斜率存在和不存在讨论,当直线PQ的斜率存在时,设其方程为y=kx+t,和椭圆方程联立后化为关于x的一元二次方程,利用根与系数关系求出P,Q两点横纵坐标的积,由⊥得其数量积等于0,代入坐标的乘积得到k和t的关系,再由圆心到直线的距离等于半径求出圆的半径,然后验证直线斜率不存在时成立.从而得到满足条件的圆存在.【解答】解:(Ⅰ)由已知,得,解得:,∴b2=a2﹣c2=4﹣3=1.故椭圆Γ的方程为;(Ⅱ)假设满足条件的圆存在,其方程为x2+y2=r2(0<r<1).当直线PQ的斜率存在时,设其方程为y=kx+t,由,得(1+4k2)x2+8ktx+4t2﹣4=0.设P(x1,y1),Q(x2,y2),则,①∵,∴x1x2+y1y2=0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理咨询员报考条件
- 二零二四年度股权投资合同标的投资额度3篇
- 二零二四年文化艺术交流与推广合同
- 二零二四年度出版合同
- 2024存量住宅装修设计合同
- 二零二四年度环保产业技术合作合同
- 二零二四年度数据中心装修工程安全标准合同
- 二零二四年智能电网用特种电缆订购合同
- 二零二四年度新能源汽车采购代理合同
- 存量航空器材租赁合同04年专用
- CJT233-2016 建筑小区排水用塑料检查井
- CJJT135-2009 透水水泥混凝土路面技术规程
- (高清版)JTGT 3650-01-2022 公路桥梁施工监控技术规程
- 人工智能基础与应用(第2版)全套教学课件
- 高教版【中职专用】《中国特色社会主义》期末试卷+答案
- 2024年《宪法》知识竞赛必背100题题库带解析附答案(完整版)
- 医药公司质量负责人变更专项内审
- 江苏省2024年中职职教高考文化统考语文答案
- 2024年高考语文标点符号的基本用法大全(新标准)
- 入职申请表(完整版)
- 深基坑土方开挖专家论证方案样本
评论
0/150
提交评论