![2022-2023学年河南省周口市项城水寨中学高二数学文下学期期末试卷含解析_第1页](http://file4.renrendoc.com/view14/M0A/39/1F/wKhkGWYTfzuAe4hmAAFncYDa-D4751.jpg)
![2022-2023学年河南省周口市项城水寨中学高二数学文下学期期末试卷含解析_第2页](http://file4.renrendoc.com/view14/M0A/39/1F/wKhkGWYTfzuAe4hmAAFncYDa-D47512.jpg)
![2022-2023学年河南省周口市项城水寨中学高二数学文下学期期末试卷含解析_第3页](http://file4.renrendoc.com/view14/M0A/39/1F/wKhkGWYTfzuAe4hmAAFncYDa-D47513.jpg)
![2022-2023学年河南省周口市项城水寨中学高二数学文下学期期末试卷含解析_第4页](http://file4.renrendoc.com/view14/M0A/39/1F/wKhkGWYTfzuAe4hmAAFncYDa-D47514.jpg)
![2022-2023学年河南省周口市项城水寨中学高二数学文下学期期末试卷含解析_第5页](http://file4.renrendoc.com/view14/M0A/39/1F/wKhkGWYTfzuAe4hmAAFncYDa-D47515.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年河南省周口市项城水寨中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设正项等比数列的前n项和为,若,,则的值是(
)A.33
B.63
C.84
D.21参考答案:C解:公比为2,
12+24+48=84.2.设直线过点其斜率为1,且与圆相切,则的值为(
)A.B.C.D.参考答案:C略3.用反证法证明命题“是无理数”时,假设正确的是(
).A.假设是有理数 B.假设是有理数C.假设或是有理数 D.假设是有理数参考答案:D试题分析:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题“是无理数”的假设为“假设是有理数”.考点:反证法.4.若两条不同的直线与同一平面所成的角相等,则这两条直线(
).A.平行
B.相交
C.异面
D.以上皆有可能参考答案:D略5.为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:
(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小?并求出最小值.参考答案:解:(1)当时,,,………2分
…4分(2),
……5分
设,.
当且仅当这时,因此的最小值为70.即隔热层修建厚时,总费用达到最小,最小值为70万元.………8分(本题亦可用导数求解)
略6.如图,该程序运行后输出的结果为(
)。
A.36
B.45
C.55
D.56参考答案:B略7.某公园现有A、B、C三只小船,A可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有
(
)
A.48
B.36
C.30
D.18参考答案:D略8.台州市某电器开关厂生产车间用传送带将产品送至下一工序,质检人员每隔半小时在传送带上取一件产品进行检验,则这种抽样方法是
(
)A.抽签法
B.系统抽样
C.分层抽样
D.随机数表法参考答案:B9.下列说法中正确的有(1)命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;(2)“x>2”是“x2-3x+2>0”的充分不必要条件;(3)命题p:?x0∈R,,则¬p:?x∈R,x2+x+1≥0;(4)若“p∧q”为假命题,则p,q均为假命题.A.1个
B.2个
C.3个
D.4个参考答案:C⑴正确;⑵由x2-3x+2>0可以得出x>2或x<1,由x>2一定可以得出x2-3x+2>0,故“”是“x2-3x+2>0”的充分不必要条件,正确;⑶正确;⑷若p∧q为假命题,则p,q中至少有一个假命题,故⑷错误,故选C.10.若1,,3成等差数列,1,,4成等比数列,则的值为(
)A.±
B.±1
C.1
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知,则的最小值为
.参考答案:,当且仅当时取等号点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.若点O在三角形ABC内,则有结论S·+S·
+S·=,把命题类比推广到空间,若点O在四面体ABCD内,则有结论:
.参考答案:V·
+V+V·+V·=13.在极坐标系中,圆上的点到直线的距离的最小值是
.参考答案:114.已知点,到直线:的距离相等,则实数的值等于
.
参考答案:或略15.给出下列不等式
①;
②;
③;
④其中一定成立的是
参考答案:③正确略16.如图所示,设抛物线的焦点为,且其准线与轴交于,以,为焦点,离心率的椭圆与抛物线在轴上方的一个交点为P.
(1)当时,求椭圆的方程;(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.参考答案:(1)设椭圆方程为,当时,,又,故椭圆方程为 5分(2),由得,即 7分,, 10分若的三条边的边长是连续的自然数,则,即 略17.一个简单几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是等腰直角三角形,则该几何体的体积为,表面积为.参考答案:,
【考点】由三视图求面积、体积.【分析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入棱锥体积公式,可得几何体的体积,累加各个面的面积可得,几何体的表面积.【解答】解:由三视图知:几何体是三棱锥,且几何体的后侧面SAC与底面垂直,高SO为,如图:其中OA=OB=OC=1,SO⊥平面ABC,AB=BC=,SA=SB=SC=2,底面△ABC的面积为:,后侧面△SAC的面积为:,左右两个侧面△SAB和△SBC的底面边长为,两腰长为2,故底边上的高为:=,故左右两个侧面△SAB和△SBC的面积为:,故几何体的表面积:,几何体的体积V==,故答案为:,三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)判断函数f(x)在(0,上单调性;(2)若恒成立,求整数的最大值;(3)求证:.参考答案:(1)上是减函数4分(2) 即h(x)的最小值大于k.则上单调递增,又存在唯一实根a,且满足当∴
故正整数k的最大值是3
----9分(3)由(Ⅱ)知∴令,则
∴ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]
∴(1+1×2)(1+2×3)…[1+n(n+1)]>e2n-3
略19.设函数R,求函数在区间上的最小值.参考答案:.解:,令得,
………………2分当时,的变化情况如下表:0+单调递减极小值单调递增
…6分又,所以,在区间上的最小值为.…8分
略20.已知函数().(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)若对(e为自然对数的底数),恒成立,求实数a的取值范围.参考答案:(Ⅰ)当时,
,又∴曲线在点处的切线方程为:即:
(Ⅱ)
∵时,∴令,解得令,解得
∴的单调递增区间为;单调递减区间
(Ⅲ)由题意,对,恒有成立,等价于对,恒有成立,即:
设,∵在上恒成立∴在单调递增∴∴只须;即:
又∵,∴∴实数的取值范围是
21.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线M的参数方程为(为参数),直线l的参数方程为(t为参数),且l与曲线M交于A,B两点.以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线M的极坐标方程;(2)已知点P的极坐标为,若,求.参考答案:解:(1)曲线的直角坐标方程为,即,∵,,∴,即,此即为曲线的极坐标方程.(2)点的直角坐标为,设,两点对应的参数为,,将直线的参数方程代入,得,则,由参数的几何意义可知,,,故.22.(理)如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离为2m,在圆环上设置三个等分点A1,A2,A3.点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等.设细绳的总长为ym.(1)①设∠CA1O=
(rad),将y表示成θ的函数关系式;②设CO=xm,将y表示成x的函数关系式;(2)请你选用(1)中的一个函数关系确定BC的长使细绳总长y最小.参考答案:
(理)(1)①在△COA1中,,,
………2分=()
………4分②在△COA1中,CA1=,BC=2-x
………6分y=3CA1+CB=3-x+2(0<x<2)
………8分(2)①,
………10分
令,则
………12分
当时,;时,,∵在上是增函数∴当角满足时,y最小,最小为;
………15分此时BCm.
………16分②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国长腰孔网数据监测研究报告
- 《小儿肾病综合征》课件
- 《迪拜帆船酒店》课件
- 肿瘤的病理诊断基础-3-1课件
- 《怎样种植红辣椒》课件
- 《研究方法论》课件
- 《疼痛注射疗法》课件
- 车身选择上复习试题及答案
- 《伦敦奥运场馆先睹》课件
- 【语文】《答司马谏议书》课件+2024-2025学年统编版高中语文必修下册
- 2024年1月浙江高考英语听力考试试题真题完整版答案详解+MP3文本
- 《赵匡胤:北宋的开国皇帝》
- 二年级 书法 开学第一课课
- 蒸压加气混凝土砌块干燥收缩检测记录11969-2020
- 2023-2024学年第二学期人教版英语五年级教学计划(含进度表)
- 小学教师师德师风培训内容(4篇)
- 负债质量管理办法
- (完整word版)劳动合同书(电子版)正规范本(通用版)
- DB1522-T 1-2023 农用天气预报 水稻适宜度
- OptiStruct及HyperStudy优化与工程应用
- 一例慢性阻塞性肺疾病个案护理
评论
0/150
提交评论