2022年河南省南阳市邓州白牛高级中学高二数学文月考试题含解析_第1页
2022年河南省南阳市邓州白牛高级中学高二数学文月考试题含解析_第2页
2022年河南省南阳市邓州白牛高级中学高二数学文月考试题含解析_第3页
2022年河南省南阳市邓州白牛高级中学高二数学文月考试题含解析_第4页
2022年河南省南阳市邓州白牛高级中学高二数学文月考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年河南省南阳市邓州白牛高级中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数f/(x)的图象是 参考答案:A略2.已知集合|为实数,且,|为实数,且,则的元素个数为(

)A.3

B.2

C.1

D.0参考答案:B略3.若双曲线的离心率,则的取值范围是(

)参考答案:C4.函数f(x)=ex+x-2的零点所在的一个区间是(

)A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)参考答案:C5.1037和425的最大公约数是 ()A.51 B.17 C.9 D.3参考答案:B略6.已知△ABC中,a=4,b=4,∠A=30°,则∠B等于()A.30° B.30°或150° C.60° D.60°或120°参考答案:A【考点】正弦定理.【分析】解法一:由A的度数求出sinA的值,再由a与b的值,利用正弦定理求出sinB的值,由B不可能为钝角或直角,得到B为锐角,利用特殊角的三角函数值即可求出B的度数;解法二:由a=b,利用等边对等角,得到A=B,由A的度数求出B的度数即可.【解答】解:法一:∵a=4,b=4,∠A=30°,∴根据正弦定理=得:sinB==,又B为锐角,则∠B=30°;法二:∵a=b=4,∠A=30°,∴∠A=∠B=30°.故选A【点评】此题考查了正弦定理,等腰三角形的判定,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.7.方程的两个根可分别作为

的离心率。A.椭圆和双曲线

B.两条抛物线

C.椭圆和抛物线D.两个椭圆参考答案:A8.把正整数按右图所示的规律排序,则从2013到2015的箭头方向依次为()

A.

B.

C.

D.参考答案:B略9.若函数,则(

A.0

B.1 C.2

D.参考答案:C10.在△ABC中,B=30°,AB=2,AC=2,那么△ABC的面积是(

)A.2 B. C.2或4 D.或2参考答案:D【考点】向量在几何中的应用.【专题】计算题.【分析】先根据正弦定理求出角C,从而求出角A,再根据三角形的面积公式S=bcsinA进行求解即可.【解答】解:由c=AB=2,b=AC=2,B=30°,根据正弦定理=得:sinC===,∵∠C为三角形的内角,∴∠C=60°或120°,∴∠A=90°或30°在△ABC中,由c=2,b=2,∠A=90°或30°则△ABC面积S=bcsinA=2或.故选D.【点评】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.数据3,4,5,6,7的方差是___

___.参考答案:212.过点且与直线垂直的直线方程为

.参考答案:13.以抛物线y2=8x的焦点为圆心,以双曲线的虚半轴长b为半径的圆与该双曲线的渐近线相切,则当取得最小值时,双曲线的离心率为.参考答案:【考点】KC:双曲线的简单性质.【分析】利用以抛物线y2=8x的焦点为圆心,以双曲线的虚半轴长b为半径的圆与该双曲线的渐近线相切,求出a2+b2=4,再利用基本不等式,得出当且仅当a=2b时,取得最小值,即可求出双曲线的离心率.【解答】解:抛物线y2=8x的焦点为(2,0),双曲线的一条渐近线方程为bx+ay=0,∵以抛物线y2=8x的焦点为圆心,以双曲线的虚半轴长b为半径的圆与该双曲线的渐近线相切,∴=b,∴a2+b2=4,∴=()(a2+b2)=(5++)≥(5+4)=,当且仅当a=b时,取得最小值,∴c=b,∴e===.故答案为.14.闭区间[0,5]上等可能的任取一个实数,那么不等式成立的概率为

参考答案:15.已知函数(R),若关于x的方程在区间,上有解,则实数a的取值范围是______.参考答案:[—4,5]16.若曲线存在垂直于轴的切线,则实数取值范围是_________.参考答案:a<0.略17.若集合U={1,2,3,4,5},M={1,2,4},则CUM=_____.参考答案:{3,5}【分析】根据集合补集的概念及运算,即可求解,得到答案.【详解】由题意,集合,根据补集的运算可得.故答案为:{3,5}.【点睛】本题主要考查了集合的表示,以及补集的运算,其中解答中熟记集合的补集的概念及运算是解答的关键,着重考查了运算与求解能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在各项为正的数列{an}中,数列的前n项和Sn满足Sn=(an+),(1)求a1,a2,a3;(2)由(1)猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.参考答案:【考点】F1:归纳推理;RG:数学归纳法.【分析】(1)由题设条件,分别令n=1,2,3,能够求出a1,a2,a3.(2)由(1)猜想数列{an}的通项公式:,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.【解答】解:(1)易求得;(2)猜想证明:①当n=1时,,命题成立

②假设n=k时,成立,则n=k+1时,==,所以,,∴.即n=k+1时,命题成立.由①②知,n∈N*时,.19.我国《算经十书》之一《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?答曰:二十三.”你能用程序解决这个问题吗?参考答案:设物共m个,被3,5,7除所得的商分别为x、y、z,则这个问题相当于求不定方程

的正整数解.m应同时满足下列三个条件:(1)mMOD3=2;(2)mMOD5=3;(3)mMOD7=2.因此,可以让m从2开始检验,若3个条件中有任何一个不成立,则m递增1,一直到m同时满足三个条件为止.程序:m=2f=0WHILE

f=0IF

mMOD3=2

AND

mMOD5=3AND

mMOD7=2

THENPRINT

“物体的个数为:”;mf=1ELSEm=m+1END

IFWENDEND

20.已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.参考答案:【考点】数列的求和;数列递推式.【分析】(1)利用等差数列、等比数列的通项公式先求得公差和公比,即可求数列的通项公式;(2)利用分组求和的方法求解数列的和,由等差数列及等比数列的前n项和公式即可求解数列的和.【解答】解:(1)设等差数列{an}的公差为d,由题意得d===3.∴an=a1+(n﹣1)d=3n(n=1,2,…).∴数列{an}的通项公式为:an=3n;设等比数列{bn﹣an}的公比为q,由题意得:q3===8,解得q=2.∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1.从而bn=3n+2n﹣1(n=1,2,…).∴数列{bn}的通项公式为:bn=3n+2n﹣1;(2)由(1)知bn=3n+2n﹣1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为=2n﹣1.∴数列{bn}的前n项和为n(n+1)+2n﹣1.【点评】本题考查了等差数列、等比数列的通项公式,考查了利用分组求和的方法求解数列的前n项和,是中档题.21.已知椭圆5x2+9y2=45,椭圆的右焦点为F,(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦AB的中点P的轨迹方程.参考答案:【考点】椭圆的简单性质.【分析】椭圆,右焦点为F(2,0).(1)过点F(2,0)且斜率为1的直线为y=x﹣2,设l与椭圆交于点A(x1,y1),B(x2,y2),直线方程与椭圆方程联立可得根与系数的关系,利用弦长公式:|AB|=即可得出.(2)设l与椭圆交于A(x1,y1),B(x2,y2),由已知得,,.把点A,B的坐标代入椭圆方程,两式相减可得k,再利用点斜式即可得出.(3)设点P(x,y),A(x1,y1),B(x2,y2),且,kAB=kFP,即,把点A,B的坐标代入椭圆方程,两式相减即可得出.【解答】解:椭圆,右焦点为F(2,0).(1)过点F(2,0)且斜率为1的直线为y=x﹣2,设l与椭圆交于点A(x1,y1),B(x2,y2),联立,消去y得14x2﹣36x﹣9=0,∴,,∴.(2)设l与椭圆交于A(x1,y1),B(x2,y2),由已知得,,.联立,两式相减得:5(x1+x2)(x1﹣x2)+9(y1+y2)(y1﹣y2)=0,∴,∴5+9k=0,即.∴l方程为y﹣1=(x﹣1)即5x+9y﹣14=0.(3)设点P(x,y),A(x1,y1),B(x2,y2),且,kAB=kFP,即,,两式相减得:5(x1+x2)(x1﹣x2)+9(y1+y2)(y1﹣y2)=0,,,整理得:5x2+9y2﹣10x=0,AB中点的轨迹方程为5x2+9y2﹣10x=0.22.如图,在梯形ABCD中,AB∥CD,∠DAC=30°,∠CAB=45°,CD=﹣.(Ⅰ)求AD的长;(Ⅱ)若BC=,求△ABC的面积.参考答案:【考点】正弦定理.【分析】(Ⅰ)由已知可求∠DCA=∠CAB=45°,进而利用正弦定理可求AD的值.(Ⅱ)利用两角和的正弦函数公式可求sin∠ADC,利用正弦定理可求AC,由余弦定理可求AB,进而利用三角形面积公式即可计算得解.【解答】(本题满分为12分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论