2024年初中升学考试专题复习数学总复习(按知识点分类)条形统计图_第1页
2024年初中升学考试专题复习数学总复习(按知识点分类)条形统计图_第2页
2024年初中升学考试专题复习数学总复习(按知识点分类)条形统计图_第3页
2024年初中升学考试专题复习数学总复习(按知识点分类)条形统计图_第4页
2024年初中升学考试专题复习数学总复习(按知识点分类)条形统计图_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

条形统计图56.(2023•成都)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.​根据统计图信息,解答下列问题:(1)本次调查的师生共有300人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“清洁卫生”的人数和所占的百分比求出样本容量,再用样本容量减去其他三个项目的人数,可得“文明宣传”的人数,进而补全条形统计图;(2)用360°乘“敬老服务”所占的百分比即可得出“敬老服务”对应的圆心角度数;(3)用参加志愿者服务的人数乘样本中参加“文明宣传”的人数所占的百分比即可.【解答】解:(1)本次调查的师生共有:60÷20%=300(人),“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:故答案为:300;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数为:360°×120(3)1500×80%×90答:估计参加“文明宣传”项目的师生人数大约为360名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.条形统计图51.(2023•苏州)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为合格;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?【考点】条形统计图;加权平均数;中位数;用样本估计总体.菁优网版权所有【分析】(1)中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);(2)根据加权平均数的计算公式计算即可;(3)用样本估计总体即可.【解答】解:(1)由题意得,这32名学生在培训前得分的中位数对应等级应为合格,故答案为:合格;(2)培训前的平均分为:(25×2+5×6+2×8)÷32=3(分),培调后的平均分为:(8×2+16×6+8×8)÷32=5.5(分),培训后比培训前的平均分提高2.5分;(3)解法示例:样本中培训后“良好”的比例为:1632样本中培训后“优秀”的比例为:832∴培训后考分等级为“合格”与“优秀”的学生共有320×75%=240(名).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.52.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择C.A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量(本)人数051252a3本及以上5合计50统计表中的a=15,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.【考点】条形统计图;用样本估计总体;统计表.菁优网版权所有【分析】(1)根据样本要具有代表性解答即可;(2)用总数减去其它类别的人数,可得a的值,进而补全条形统计图;(3)用800乘样本中暑期课外阅读数量达到2本及以上的学生人数所占比例即可;(4)答案不唯一,只要合理即可.【解答】解:(1)下面的抽取方法中,应该选择从八年级所有学生中随机抽取50名学生,故答案为:C;(2)由题意得,a=50﹣5﹣25﹣5=15,补全条形统计图如下:故答案为:15;(3)800×15+5答:八年级学生暑期课外阅读数量达到2本及以上的学生人数约为320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).【点评】本题考查了条形统计图,统计表以及用样本估计总体,掌握题意读懂统计图是解题的关键.53.(2023•自贡)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.【考点】条形统计图;加权平均数;中位数;众数;用样本估计总体.菁优网版权所有【分析】(1)根据题意直接画图;(2)根据(1)直接写出即可;(3)先求课外读书数量不少于3本的学生人数所占的比例,再乘以600.【解答】解:(1),(2)本次所抽取学生课外读书数量的众数为4本,中位数为3+42平均数为1×1+2×2+3×3+4×4+2×512(3)3+4+212答:本学期开学以来课外读书数量不少于3本的学生人数为450名.【点评】本题主要考查了学生平均数、众数、中位数、条形统计图等统计的知识,难度不大,认真作答即可.条形统计图53.(2023•怀化)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为200;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由“视力正常人数及其所占百分比可得总人数;(2)用(1)的结论乘15%可得“中度近视”的人数,进而得出“高度近视”的人数,再补全条形统计图;用360°乘“轻度近视”所占比例可得扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)用3000乘样本中“轻度近视”所占比例可得答案.【解答】解:(1)所抽取的学生人数为:90÷45%=200.故答案为:200;(2)样本中“中度近视”的人数为:200×15%=30(人),“高度近视”的人数为:200﹣90﹣70﹣30=10(人),补全条形统计图如下:扇形统计图中“轻度近视”对应的扇形的圆心角的度数为:360°×70(3)3000×70答:估计该校学生中近视程度为“轻度近视”的人数约1050人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.54.(2023•武威)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x表示,分成6个等级:A.x<10;B.10≤x<15;C.15≤x<20;D.20≤x<25;E.25≤x<30;F.30≤x≤35).下面给出了部分信息:a.八年级学生上、下两个学期期末地理成绩的统计图如图:b.八年级学生上学期期末地理成绩在C.15≤x<20这一组的成绩是:15,15,15,15,15,16,16,16,18,18;c.八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期平均数众数中位数八年级上学期17.715m八年级下学期18.21918.5根据以上信息,回答下列问题:(1)填空:m=16;(2)若x≥25为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有35人;(3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.【考点】条形统计图;加权平均数;中位数;众数;用样本估计总体;扇形统计图.【分析】(1)根据中位数的定义可得m的值;(2)用200乘样本中下学期期末地理成绩达到优秀的学生所占比例即可;(3)比较平均数、众数和中位数可得答案.【解答】解:(1)把八年级上学期40名学生的地理成绩从小到大排列,排在中间的两个数分别为16,16,故中位数m=16+16故答案为:16;(2)200×6+1即这200名学生八年级下学期期末地理成绩达到优秀的约有35人.故答案为:35;(3)该校八年级学生的期末地理成绩下学期比上学期有提高,理由如下:因为该校八年级学生的期末地理成绩下学期的平均数、众数和中位数均比上学期大,所以该校八年级学生的期末地理成绩下学期比上学期有提高.【点评】本题考查条形统计图,样本估计总体的思想,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.条形统计图51.(2023•宜昌)如图,条形图描述了某车间工人日加工零件数的情况.这些工人日加工零件数的中位数是6.【答案】6.【分析】中位数是大小处于中间位置的数(最中间两个数的平均数),根据中位数的概念求得即可.【解答】解:由题意得,样本容量为:4+5+8+9+6+4=36,把这36个数从小到大排列,第18个与第19个都是6,因而中位数是6.故答案为:6.【点评】本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.条形统计图55.(2023•郴州)某校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A、B、C、D、E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1中缺失的数据,图形补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.【答案】(1)见解答;(2)144°;(3)300名.【分析】(1)用B的人数除以20%求得本次调查的学生总数,进而得出最喜欢去A地的人数;(2)用360°乘“C”所占比例可以求得“C”部分所占圆心角的度数;(3)用1200乘样本中D所占比例即可.【解答】解:(1)本次调查的学生人数为:20÷20%=100(人),最喜欢去A地的人数为:100﹣20﹣40﹣25﹣5=10(人),补全条形统计图如下:(2)研学活动地点C所在扇形的圆心角的度数为:360°×40(3)1200×25答:估计最喜欢去D地研学的学生人数约300名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.条形统计图56.(2023•滨州)中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”,为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间“进行了随机调查,为便于统计学生每天完成书面作业的时间(用t表示,单位h)状况设置了如下四个选项,分别为A:t≤1,B:1<t≤1.5,C:1.5<t≤2,D:t>2,并根据调查结果绘制了两幅不完整的统计图.请根据以上提供的信息解答下列问题:(1)此次调查,选项A中的学生人数是多少?(2)在扇形统计图中,选项D所对应的扇形圆心角的大小为多少?(3)如果该县有15000名初中学生,那么请估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?(4)请回答你每天完成书面作业的时间属于哪个选项,并对老师的书面作业布置提出合理化建议.【答案】(1)8人;(2)43.2°;(3)9600人;(4)建议减少作业量,根据学生的能力分层布置作业(答案不唯一,合理即可).【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,进而得出选项A中的学生人数;(2)用360°乘D所占比例可得答案;(3)用15000乘样本中“每天完成书面作业的时间不超过90分钟”的学生所占比例即可;(4)答案不唯一,合理即可.【解答】解:(1)24÷24%﹣56﹣24﹣12=8(人),答:此次调查,选项A中的学生人数是8人;(2)360°×12答:在扇形统计图中,选项D所对应的扇形圆心角的大小为43.2°;(3)15000×8+56答:该县“每天完成书面作业的时间不超过90分钟”的初中学生约有9600人;(4)建议减少作业量,根据学生的能力分层布置作业(答案不唯一,合理即可).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.条形统计图55.(2023•十堰)市体育局对甲、乙两运动队的某体育项目进行测试,两队人数相等,测试后统计队员的成绩分别为:7分、8分、9分、10分(满分为10分).依据测试成绩绘制了如图所示尚不完整的统计图表:成绩7分8分9分10分人数101m7请根据图表信息解答下列问题:(1)填空:α=126°,m=2;(2)补齐乙队成绩条形统计图;(3)①甲队成绩的中位数为7.5,乙队成绩的中位数为8;②分别计算甲、乙两队成绩的平均数,并从中位数和平均数的角度分析哪个运动队的成绩较好.【答案】(1)126;2;(2)见解答;(3)甲、乙两队成绩的平均数均为8.3,但乙队的中位数比甲队大,所以乙运动队的成绩较好.【分析】(1)用360°分别减去其它三部分的度数可得a的值;根据乙队9分的人数和它所占比例可得乙队人数,再根据两队人数相等可得m的值;(2)先求出7分的人数,再补齐乙队成绩条形统计图;(3)①根据中位数的定义解答即可;②根据加权平均数公式解答即可.【解答】解:(1)由题意得,a=360﹣72﹣72﹣90=126;乙队人数为:5÷90故m=20﹣10﹣1﹣7=2.故答案为:126;2;(2)乙队7分人数为:20﹣4﹣5﹣4=7(人),补齐乙队成绩条形统计图如下:(3)①甲队成绩的中位数为:7+82乙队成绩的中位数为:8+82故答案为:7.5;8;②甲队成绩的平均数为:120乙队成绩的平均数为:120因为甲、乙两队成绩的平均数相同,但乙队的中位数比甲队大,所以乙运动队的成绩较好.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.56.(2023•天津)为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动,该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为40,图①中m的值为15;(2)求统计的这组学生年龄数据的平均数、众数和中位数.【答案】(1)40;15;(2)14;15;14.【分析】(1)把各条形图对应的学生人数加起来为a的值;根据百分比由100%依次减去各年龄对应的百分比可得m的值;(2)利用加权平均数,众数,中位数定义得出结果即可.【解答】解:(1)a=5+6+13+16=40;∵m%=100%﹣12.5%﹣40%﹣32.5%=15%,∴m=15.故答案为:40;15;(2)平均数为=12×5+13×6+14×13+15×16∵15岁的学生最多,∴众数为15;∵一共调查了40名学生,12岁的有5人,13岁的6人,∴中位数为14.【点评】此题主要是考查了统计的应用,能够熟练掌握条形图的运用,平均数,众数,中位数定义是解题的关键.57.(2023•杭州)某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生调查,把收集的数据按照A,B,C,D四类(A表示仅学生参与;B表示家长和学生一起参与;C表示仅家长参与;D表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B类的学生人数.【答案】(1)200名;(2)见解答;(3)600名.【分析】(1)由A类别人数及其所占百分比可得总人数;(2)结合(1)的结论求出B类的人数,进而补全条形统计图;(3)总人数乘以样本中B类别人数所占比例.【解答】解:(1)60÷30%=200(名),答:在这次抽样调查中,共调查了200名学生;(2)样本中B类的人数为:200﹣60﹣10﹣10=120(名),补全条形统计图如下:(3)1000×120答:估计B类的学生人数约600名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.条形统计图22.(2023•湖北)为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级,将收集的数据整理后,绘制成如下不完整的统计图表.等级人数A(很强)aB(强)bC(一般)20D(弱)19E(很弱)16(1)本次调查的学生共100人;(2)已知a:b=1:2,请将条形统计图补充完整;(3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中“防诈骗意识”合格的学生有多少人?【答案】(1)100;(2)补充完整的条形统计图见解答;(3)1300人.【分析】(1)根据C对应的人数和百分比,可以计算出本次调查的人数;(2)根据(1)中的结果可以计算出a、b的值,即可将条形统计图补充完整;(3)根据(2)中的结果和表格中的数据,可以计算出该校2000名学生中“防诈骗意识”合格的学生有多少人.【解答】解:(1)20÷20%=100(人),即本次调查的学生共100人,故答案为:100;(2)∵a:b=1:2,∴a=(100﹣20﹣19﹣16)×13=15,b补充完整的条形统计图如图所示;(3)2000×15+30+20答:估计该校2000名学生中“防诈骗意识”合格的学生有1300人.【点评】本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.条形统计图54.(2023•齐齐哈尔)为了解学生完成书面作业所用时间的情况,进一步优化作业管理,某中学从全校学生中随机抽取部分学生,对他们一周平均每天完成书面作业的时间t(单位:分钟)进行调查.将调查数据进行整理后分为五组:A组“0<t≤45”;B组“45<t≤60“;C组“60<t≤75“;D组“75<t≤90“;E组“t>90“.现将调查结果绘制成如下两幅不完整的统计图.​根据以上信息,解答下列问题:(1)这次调查的样本容量是50,请补全条形统计图;(2)在扇形统计图中,A组对应的圆心角的度数是36°,本次调查数据的中位数落在C组内;(3)若该中学有2000名学生,请你估计该中学一周平均每天完成书面作业不超过90分钟的学生有多少人?【答案】(1)50;补全条形统计图见解答;(2)36;C;(3)1920人.【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出A组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.【解答】解:(1)这次调查的样本容量是:13÷26%=50;B组的人数为:50﹣5﹣13﹣20﹣2=10(人),补全条形统计图如下:故答案为:50;(2)A组对应的圆心角的度数是:360°×5本次调查数据的中位数落在C组,故答案为:36;C;(3)2000×50−2答:估计该中学一周平均每天完成书面作业不超过90分钟的学生有1920人.【点评】本题考查的是条形统计图和扇形统计图的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论