版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几何变换综合题49.(2023•大连)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.【答案】(1)见解析过程;(2)3+57(3)10.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB,由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°-2∠C,由邻补角的性质可得结论;(2)由三角形中位线定理可得CD=2EF,由勾股定理可求AF,BF,即可求解;问题2:先证四边形CGMD是矩形,由勾股定理可求AD,由等腰三角形的性质可求MD,CG,即可求解.【解答】问题1:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵△BDE由△ABE翻折得到,∴∠A=∠BDE=180°-2∠C,∵∠EDC+∠BDE=180°,∴∠EDC=2∠ACB;(2)解:如图,连接AD,交BE于点F,∵△BDE由△ABE翻折得到,∴AE=DE,AF=DF,∴CD=2EF=3,∴EF=3∵点E是AC的中点,∴AE=EC=12在Rt△AEF中,AF=AE在Rt△ABF中,BF=AB∴BE=BF+EF=3+问题2:解:连接AD,过点B作BM⊥AD于M,过点C作CG⊥BM于G,∵AB=BD,BM⊥AD,∴AM=DM,∠ABM=∠DBM=12∠∵2∠BDC=∠ABD,∴∠BDC=∠DBM,∴BM∥CD,∴CD⊥AD,又∵CG⊥BM,∴四边形CGMD是矩形,∴CD=GM,在Rt△ACD中,CD=1,AD=4,AD=AC∴AM=MD=152,CG=MD在Rt△BDM中,BM=BD∴BG=BM-GM=BM-CD=7在Rt△BCG中,BC=BG【点评】本题是几何变换综合题,考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质和判定,灵活运用这些性质解决问题是解题的关键.几何变换综合题42.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【考点】几何变换综合题.【分析】(1)根据旋转的性质得出CE=CF,∠ECF=60°,进而证明△BCE≌AACF(SAS),即可得证;试(2)过点F作FKIIAD,交DH点的延长线于点K,连接EK,FD,证明四边形四边形EDFK是平行四边形,即可得证;(3)如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,根据折叠的性质可得∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,进而得出△ADR是等边三角形,由(2)可得RtACED≌RtACFG,得出四边形GDQF是平行四边形,则QF=DC=﹣4C=2.进而得出CPGQ=360°﹣2C4GD=120°,则PQ=√3pG=√3GQ,当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,即可求解.(1)由“SAS”可证△ACF≌△BCE,可得结论;(2)【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=12∴∠AGF=90°,又∵DG=12AC=CG,∠∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠HKF=∠ADK=30°,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,CF=CECD=CG∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=12由(2)可知G是AC的中点,则GA=GD,∴∠GAD=∠GDA=30°,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=3PG=3∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=12GC=∴PQ=3∴PQ+QF=3【点评】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.43.(2023•武威)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.【考点】几何变换综合题.【分析】(1)①根据△ABC和△BDE都是等边三角形推出判定△ABE和△CBD全等,然后根据全等三角形的对应边相等即可得证;②根据等边三角形的性质和对称的性质即可推出线段AD,BD,DF的数量关系;(2)过点B作BE⊥AD于E,根据等腰直角三角形的性质推出判定△ABE∽△CBD,然后根据等腰直角三角形的性质和对称性即可推出线段AD,BD,DF的数量关系;(3)过点A作AG⊥BD于G,推出△ADG是等腰直角三角形,求出AG、FG、AF的长后即可求出cos∠AFB的值.【解答】(1)证明:①∵△ABC和△BDE都是等边三角形,∴AB=CB,EB=DB,∠ABC=∠EBD=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD;②解:AD=BD+DF.理由如下:∵△BDE是等边三角形,∴BD=DE,∵点C与点F关于AD对称,∴CD=DF,∵AD=AE+DE,∴AD=BD+DF;(2)BD+DF=2AD理由如下:如图1,过点B作BE⊥AD于E,∵点C与点F关于AD对称,∴∠ADC=∠ADB,又∵CD⊥BD,∴∠ADC=∠ADB=45°,又∵BE⊥AD,∴△BDE是等腰直角三角形,又∵△ABC是等腰直角三角形,∴ABBC=BEBD=∴∠ABE=∠CBD,∴△ABE∽△CBD,∴CDAE=BCAB=∴DF=2AE∵△BDE是等腰直角三角形,∴BD=2∴BD+DF=2即:BD+DF=2AD(3)解:如图2,过点A作AG⊥BD于G,又∵∠ADB=45°,∴△AGD是等腰直角三角形,又∵AD=42,∴AG=DG=4,BD+DF=2AD∵BD=3CD,CD=DF,∴DF=2,又∵DG=4,∴FG=DG﹣DF=2,在Rt△AFG中,由勾股定理得:AF=A∴cos∠AFB=FG【点评】本题是几何变换综合题,主要考查等边三角形的性质,等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理,深入理解题意是解决问题的关键.几何变换综合题47.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=2k,求等联线AB和线段PE的长(用含k【答案】(1)作图见解答.(2)①△PCF是等腰直角三角形.理由见解答.②等联线AB=3k,线段PE=5【分析】(1)根据新定义,画出等联角即可;(2)①△PCF是等腰直角三角形,过点C作CN⊥BE交BE的延长线于N,由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,证明四边形ABNC为正方形,进而证明Rt△CME≌Rt△CNE,得出∠PCF=45°,即可求解;②过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°.证明△APC≌△RFP,得出AP=BR=FR,在Rt△BRF中,BR2+FR2=BF2,BF=2k,进而证明四边形BRFQ为正方形,则BQ=QF=k,由FQ∥CN,得出△AEF∽△NEC,根据相似三角形的性质得出NE=32k,根据PE【解答】解:(1)作图如下:(方法不唯一)(2)①△PCF是等腰直角三角形.理由为:如图,过点C作CN⊥BE交BE的延长线于N.由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,∵AC=AB,∠A=∠PBD=∠N=90°,∴四边形ABNC为正方形,∴CN=AC=CM,又∵CE=CE,∴Rt△CME≌Rt△CNE(HL),∴∠3=∠4,而∠1+∠2+∠3+∠4=90°,∠CPF=90°,∴∠PCF=∠2+∠3=∠CFP=45°,∴△PCF是等腰直角三角形.②如图,过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°,∵∠1+∠5=∠5+∠6=90°,∴∠1=∠6,由△PCF是等腰直角三角形知:PC=PF,∴△APC≌△RFP(AAS),∴AP=FR,AC=PR,而AC=AB,∴AP=BR=FR,在Rt△BRF中,BR2+FR2=BF2,BF=2∴AP=BR=FR=k,∴PB=2AP=2k,∴AB=AP+PB=BN=3k,∵BR=FR,∠QBR=∠R=∠FQB=90°,∴四边形BRFQ为正方形,BQ=OF=k,∵FQ⊥BN,CN⊥BN,∴FQ∥CN,∴QENE而QE=BN﹣NE﹣BQ=3k﹣NE﹣k=2k﹣NE,∴2k−NENE解得:NE=32由①知:PM=AP=k,ME=NE=3∴PE=PM+ME=k+3答:等联线AB=3k,线段PE=5【点评】本题考查了几何新定义,正方形的性质与判定,折叠问题,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,理解新定义,掌握正方形的性质是解题的关键.48.(2023•岳阳)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是MN=12AC,MN与AC的位置关系是MN∥AC特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.【答案】(1)MN=12AC;MN(2)①∠BCF=30°;②CD=62(3)∠BAE=∠ABF或∠BAE+∠ABF=180°.【分析】(1)AB=AC,点M,N分别为边AB,BC的中点,则MN是△ABC的中位线,即可得出结论;(2)特例研讨:①连接EM,MN,NF,证明△BME是等边三角形,△BNF是等边三角形,得出∠FCB=30°;②连接AN,证明△ADN∽△BDE,则DNDE=ANBE=222=2,设DE=x,则DN=2x,在Rt△ABE中,BE=2,AE=23,则AD=23−x,在Rt△(3)当点C,E,F在同一直线上时,且点E在FC上时,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,得出∠BEC+∠BAC=180°,则A.B,E,C在同一个圆上,进而根据圆周角定理得出∠EAC=∠EBC=α﹣θ,表示∠BAE与∠ABF,即可求解;当F在EC上时,可得A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,设∠NBF=β,则∠EBM=β,则α+β=360°,表示∠BAE与∠ABF,即可求解.【解答】解:(1)∵AB=AC,点M,N分别为边AB,BC的中点,∴MN是△ABC的中位线,∴MN=12AC,MN故答案是:MN=12AC,MN∥(2)特例研讨:①如图所示,连接EM,MN,NF,∵MN是△BAC的中位线,∴MN∥AC,∴∠BMN=∠BAC=90°,∵将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,∴BE=BM,BF=BN;∠BEF=∠BMN=90°,∵点A,E,F在同一直线上,∴∠AEB=∠BEF=90°,在Rt△ABE中,M是斜边AB的中点,∴ME=1∴BM=ME=BE,∴△BME是等边三角形,∴∠ABE=60°,即旋转角α=60°,∴∠NBF=60°,BN=BF,∴△BNF是等边三角形,又∵BN=NC,BN=NF,∴NF=NC,∴∠NCF=∠NFC,∴∠BNF=∠NCF+∠NFC=2∠NFC=60°,∴∠FCB=30°;(2)如图所示,连接AN,∵AB=AC,∠BAC=90°BC=42∴AB=22BC=4,∠ACB∵∠ADN=∠BDE,∠ANB=∠BED=90°,∴△ADN∽△BDE,∴DNDE设DE=x,则DN=2在Rt△ABE中,BE=2,AE=23,则AD=2在Rt△ADN中,AD2=DN2+AN2,∴(23解得:x=4−23或x=−2∴CD=DN+CN=2(3)如图所示,当点C,E,F在同一直线上时,且点E在FC上时,∵AB=AC,∴∠ABC=∠ACB,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,∵MN是△ABC的中位线,∴MN∥AC,∴∠MNB=∠MBN=θ,∵将△BMN绕点B顺时针旋转α,得到△BEF,∴△EBF≌△MBN,∠MBE=∠NBF=α,∴∠EBF=∠EFB=θ,∴∠BEF=180°﹣2θ,∵点C,E,F在同一直线上,∴∠BEC=2θ,∴∠BEC+∠BAC=180°,∴A,B,E,C在同一个圆上,∴∠EAC=∠EBC=α﹣θ,∴∠BAE=∠BAC﹣∠EAC=(180°﹣2θ)﹣(α﹣θ)=180°﹣α﹣θ,∵∠ABF=α+θ,∴∠BAE+∠ABF=180°,如图所示,当F在EC上时,∵∠BEF=∠BAC,BC=BC,∴A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,将△BMN绕点B顺时针旋转α,得到△BEF,设∠NBF=β,则∠EBM=β,则α+β=360°,∴∠ABF=θ﹣β,∵∠BFE=∠EBF=θ,∠EFB=∠FBC+∠FCB,∴∠ECB=∠FCB=∠EFB﹣∠FBC=θ﹣β,∵EB=∴∠EAB=∠ECB=θ﹣β,∴∠BAE=∠ABF,综上所述,∠BAE=∠ABF或∠BAE+∠ABF=180°.【点评】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌以上知识是解题的关键.几何变换综合题43.(2023•广元)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BCD=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是AC=233(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.【答案】(1)AC=2(2)BC=27(3)35【分析】(1)证明△ABEC∽△CBD,根据相似三角形的性质得出ABBC=BEBD,∠DBE=∠CBA,进而证明△(2)求出AE=2,延长DE交AB于点F,在Rt△AEF中,由直角三角形的性质求得EF,AF,进而求得BF的长,根据(1的结论,得出DE=3,在Rt△BFD中,勾股定理求得BD,进而根据△ABC∽△EBD(3)如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,同(1)可得△BDE∽△BCA,求出AE的长,进而得出D在以E为圆心,433为半径的圆上运动,当点A,E,D三点共线时,AD的值最大,进而求得cos∠BDA=277,sin∠BDA=217,根据△ABC∽△EBD得出∠BDE=∠BCA,过点A作AF⊥BC于点F【解答】解:(1)在Rt△BDC中,∠DBC=30°,在Rt△BAE中,∠AEB=90°,∠EBA=30°,∴△ABE∽△CBD,∠DBE+∠EBC=∠ABC+∠EBC,BE=AB×cos∠ABE=3∴ABBC=BEBD,∠∴△ABC∽△EBD,∴ACDE∴AC=2故答案为:AC=23(2)在Rt△BAE,∠AEB=90°,∠EBA=30°,AB=4,∴AE=AB•sin∠EBA=12AB=2,∠延长DE交AB于点F,如图所示,∴EF=AE×sin∠BAE=32×2=∴BF=AB﹣AF=4﹣1=3,由(1)可得AC=2∴DE=3∴DF=DE+EF=23在Rt△BFD中,BD=B∵△ABC∽△EBD,∴BCBD∴BC=2即BC=27(3)如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,同(1)可得△BDE∽△BCA,∴DEAC∵AC=2,∴DE=4在Rt△AEB中,AB=4,AE=AB×tan∠EBA=4×3∴D在以E为圆心,43∴当点A,E,D三点共线时,AD的值最大,此时如图所示,则AD=AE+DE=8在Rt△ABD中,BD=A∴cos∠BDA=ADBD=8∵∠BEA=90°,∴∠BED=90°,∵△ABC∽△EBD,∴∠BDE=∠BCA,过点A作AF⊥BC于点F,∴CF=AC×cos∠ACB=2×277∵∠DBC=30°,∴BC=3∴BF=BC−CF=27Rt△AFB中,tan∠CBA=AF【点评】本题是几何变换综合题,考查了旋转的性质,直角三角形的性质,相似三角形的性质与判定,勾股定理,解直角三角形,锐角三角函数的定义,熟练掌握解直角三角形及相似三角形的性质与判定是解题的关键.44.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,由PC=P′C,∠PCP′=60°,可知△PCP′为等边三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,由两点之间线段最短可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=120°;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为A点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为213a元.(结果用含【答案】(1)等边;两点之间线段最短;120°;A;(2)5;(3)213a【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析后即可得出结论,然后填空即可;(2)根据(1)的方法将△APC绕点C顺时针旋转60°得到△A'P'C,即可得出可知当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,再根据∠ACB=30°可证明∠ACA'=90°,根据勾股定理即可求出A'B;(3)根据总铺设成本=a(PA+PB+2PC),将△APC绕点C顺时针旋转90°得到△A'P'C,得到等腰直角△PP'C,推出PP'=2PC,即可得出当B、P、P'、A在同一条直线上时,P'A'+PB+PP'取最小值,即PA+PB+2PC取最小值为A'B的长,然后根据已知条件和旋转的性质求出【解答】解:(1)∵PC=P'C,∠PCP'=60°,∴△PCP'为等边三角形,∴PP'=PC,∠P'PC=∠PP'C=60°,又∵P'A'=PA,∴PA+PB+PC=PA'+PB+PP'≥A'B,根据两点之间线段最短可知,当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,此时的P点为该三角形的“费马点”,∴∠BPC+∠P'PC=180°,∠A'P'C+∠PP'C=180°,∴∠BPC=120°,∠A'P'C=120°,∵将△APC绕点C顺时针旋转60°得到△A′P′C,∴△APC≌△A'P'C,∴∠APC=∠AP'C'=120°,∴∠APB=360°﹣120°﹣120°=120°,∴∠APC=∠BPC=∠APB=120°,∵∠BAC≥120°,∴BC>AC,BC>AB,∴BC+AB>AC+AB,BC+AC>AB+AC,∴三个顶点中顶点A到另外两个顶点的距离和最小,又∵已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点,∴该三角形的“费马点”为点A.故答案为:等边;两点之间线段最短;120°;A;(2)如图4,将△APC绕点C顺时针旋转60°得到△A'P'C,连接PP',由(1)可知当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,∵∠ACP=∠A'CP',∴∠ACP+∠BCP=∠A'CP'+∠BCP=∠ACB=30°,又∵∠PCP'=60°,∴∠BCA'=90°,根据旋转的性质可知:AC=A'C=3,∴A'B=4即PA+PB+PC的最小值为5;(3)∵总铺设成本=PA×a+PB×a+PC×2a=a(PA+PB+∴当PA+PB+2PC将△APC绕点C顺时针旋转90°得到△A'P'C,连接PP',A'B,由旋转性质可知:P'C=PC,∠PCP'=∠ACA'=90°,P'A'=PA,A'C=AC=4km,∴PP'=2PC∴PA+PB+2PC=P'A'+PB+PP当B、P、P'、A在同一条直线上时,P'A'+PB+PP'取最小值,即PA+PB+2PC取最小值为A'B过点A'作A'H⊥BC于H,∵∠ACB=60°,∠ACA'=90°,∴∠A'CH=30°,∴A'H=12A'C=2∴HC=A'C2−A'H∴BH=BC+CH=23+23∴A'B=AH2即PA+PB+2PC的最小值为213总铺设成本为:总铺设成本=a(PA+PB+2PC)=故答案为:213a【点评】本题是几何变换综合题,主要考查旋转的性质,全等三角形的判定和性质,两点之间线段最短以及等边三角形的性质,深入理解题意是解决问题的关键.几何变换综合题50.(2023•湖北)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.【问题探究】(1)如图1,当m=1时,直接写出AD,BE的位置关系:AD⊥BE.(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE【答案】(1)BE⊥AD;(2)成立,理由见解析过程;(3)BE=63或43.【分析】(1)由“SAS”可证△ACD≌△BCE,可得∠DAC=∠CBE,由余角的性质可证AD⊥BE;(2)通过证明△DCA∽△ECB,可得∠DAC=∠CBE,由余角的性质可证AD⊥BE;(3)分两种情况讨论,由相似三角形的性质可得BE=3AD【解答】解:(1)如图1,延长BE交AC于点H,交AD于N,当m=1时,DC=CE,CB=CA,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠DAC=∠CBE,∵∠CAB+∠ABE+∠CBE=90°,∴∠CAB+∠ABE+∠DAC=90°,∴∠ANB=90°,∴AD⊥BE,故答案为:AD⊥BE;(2)(1)中的结论成立,理由如下:如图2,延长BE交AC于点H,交AD于N,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,又∵DCCE∴△DCA∽△ECB,∴∠DAC=∠CBE,∵∠CAB+∠ABE+∠CBE=90°,∴∠CAB+∠ABE+∠DAC=90°,∴∠ANB=90°,∴AD⊥BE,(3)如图3,当点E在线段AD上时,连接BE,∵△DCA∽△ECB,∴BEAD=BC∴BE=3AD=3(4+∵AD⊥BE,∵∴AB2=AE2+BE2,∴112=AE2+3(4+AE)2,∴AE=2或AE=﹣8(舍去),∴BE=63,当点D在线段AE上时,连接BE,∵△DCA∽△ECB,∴BEAD=BC∴BE=3AD=3(∵AD⊥BE,∵∴AB2=AE2+BE2,∴112=AE2+3(AE﹣4)2,∴AE=8或AE=﹣2(舍去),∴BE=43,综上所述:BE=63或43.【点评】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,灵活运用这些性质解决问题是解题的关键.几何变换综合题39.(2023•巴中)综合与实践.(1)提出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论