![湖南省湘潭市重点达标名校2024届中考猜题数学试卷含解析_第1页](http://file4.renrendoc.com/view14/M06/2C/04/wKhkGWYTMX6AKqo8AAJEDpkjTwY212.jpg)
![湖南省湘潭市重点达标名校2024届中考猜题数学试卷含解析_第2页](http://file4.renrendoc.com/view14/M06/2C/04/wKhkGWYTMX6AKqo8AAJEDpkjTwY2122.jpg)
![湖南省湘潭市重点达标名校2024届中考猜题数学试卷含解析_第3页](http://file4.renrendoc.com/view14/M06/2C/04/wKhkGWYTMX6AKqo8AAJEDpkjTwY2123.jpg)
![湖南省湘潭市重点达标名校2024届中考猜题数学试卷含解析_第4页](http://file4.renrendoc.com/view14/M06/2C/04/wKhkGWYTMX6AKqo8AAJEDpkjTwY2124.jpg)
![湖南省湘潭市重点达标名校2024届中考猜题数学试卷含解析_第5页](http://file4.renrendoc.com/view14/M06/2C/04/wKhkGWYTMX6AKqo8AAJEDpkjTwY2125.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省湘潭市重点达标名校2024届中考猜题数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.已知a,b为两个连续的整数,且a<<b,则a+b的值为()A.7 B.8 C.9 D.102.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱的高BC=6cm,圆锥的高CD=3cm,则这个陀螺的表面积是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm23.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1094.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为πcm2,则扇形圆心角的度数为()A.120° B.140° C.150° D.160°5.的相反数是A.4 B. C. D.6.下列各数中是有理数的是()A.π B.0 C. D.7.若分式方程无解,则a的值为()A.0 B.-1 C.0或-1 D.1或-18.数据”1,2,1,3,1”的众数是()A.1B.1.5C.1.6D.39.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)10.给出下列各数式,①②③④计算结果为负数的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.12.|-3|=_________;13.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.14.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.15.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。16.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).三、解答题(共8题,共72分)17.(8分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y00(3)观察所画的图象,写出该函数的两条性质:.18.(8分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.19.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.20.(8分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.(1)试判断∠AED与∠C的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为.21.(8分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.22.(10分)如图,在⊿中,,于,.⑴.求的长;⑵.求的长.23.(12分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)24.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】∵9<11<16,∴,即,∵a,b为两个连续的整数,且,∴a=3,b=4,∴a+b=7,故选A.2、C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.3、B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数4、C【解析】
根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为πcm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=.5、A【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.6、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.7、D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.8、A【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A.【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9、C【解析】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.10、B【解析】∵①;②;③;④;∴上述各式中计算结果为负数的有2个.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】
如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=×42=4,再证明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解决问题.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等边三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S阴=4-=3,故答案为3.【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-1|=1.故答案为1.13、220.【解析】试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键14、110°或50°.【解析】
由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.15、0.1【解析】
根据频率的求法:频率=,即可求解.【详解】解:根据题意,38-45岁组内的教师有8名,
即频数为8,而总数为25;
故这个小组的频率是为=0.1;
故答案为0.1.【点睛】本题考查频率、频数的关系,属于基础题,关键是掌握频率的求法:频率=.16、>;【解析】
∵=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,∵|−1−1|>|2−1|,且m>n,∴a>0.故答案为>三、解答题(共8题,共72分)17、(1)①y=;②;(1)见解析;(3)见解析【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x①当0≤x≤1时∵MN∥BD∴△APM∽△AOD∴∴MP=∵AC垂直平分MN∴PN=PM=x∴MN=x∴y=AP•MN=②当1<x≤4时,P在线段OC上,∴CP=4﹣x∴△CPM∽△COD∴∴PM=∴MN=1PM=4﹣x∴y==﹣∴y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0≤x≤1时,y随x的增大而增大1、当1<x≤4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.18、(1);(2)①2,②【解析】分析:(1)重合部分是等边三角形,计算出边长即可.①证明:在图3中,取AB中点E,证明≌,即可得到,②由①知,在旋转过程60°中始终有≌四边形的面积等于=.详解:(1)∵四边形为菱形,∴∴为等边三角形∴∵AD//∴∴为等边三角形,边长∴重合部分的面积:①证明:在图3中,取AB中点E,由上题知,∴又∵∴≌,∴∴,②由①知,在旋转过程60°中始终有≌∴四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.19、(1)BD=CD=5;(2)BD=5,BC=5.【解析】
(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如图②,连接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,设垂足为E,∴BE=EC=OB•sin60°=,∴BC=5.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.20、(1)∠AED=∠C,理由见解析;(2)【解析】
(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可.【详解】(1)∠AED=∠C,证明如下:连接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切线,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)连接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圆AB的中点,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案为【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.21、(1)36(2)不公平【解析】
(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.【详解】(1)列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,(2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P(两次掷的骰子的点数相同)P(两次掷的骰子的点数的和是6)=∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.23、(1)商店购进甲种商品40件,购进乙种商品60件;(2)应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【解析】
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环氧大豆油项目提案报告模式
- 2025售楼部购房合同范本
- 2025家禽类产品普通买卖合同
- 我们的节日清明活动总结15篇
- 建筑工程中的工程验收
- 感恩节国旗下幼儿讲话稿(15篇)
- 市场趋势分析
- 复习技巧与科学备考时间规划主题班会
- 数学老师家长会发言稿合集15篇
- 安全第一安全事故案例分析的必要性
- 加油站廉洁培训课件
- 2022版义务教育(生物学)课程标准(附课标解读)
- 2023届上海市松江区高三下学期二模英语试题(含答案)
- 诫子书教案一等奖诫子书教案
- 《民航服务沟通技巧》教案第16课民航服务人员平行沟通的技巧
- 深圳市物业专项维修资金管理系统操作手册(电子票据)
- 2023年铁岭卫生职业学院高职单招(数学)试题库含答案解析
- 起重机械安装吊装危险源辨识、风险评价表
- 华北理工儿童口腔医学教案06儿童咬合诱导
- 中国建筑项目管理表格
- 高一3班第一次月考总结班会课件
评论
0/150
提交评论