版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AI
Governance
AllianceBriefing
Paper
SeriesJA
N
U
A
RY
20
2
4January2024AIGovernanceAllianceBriefingPaperSeriesForewordPaulDaughertyJeremyJurgensManagingDirector,WorldEconomicForumChiefTechnologyandInnovationOfficer(CTIO),AccentureCathyLiJohnGrangerSeniorVice-President,IBMConsultingHead,AI,DataandMetaverse;MemberoftheExecutiveCommittee,WorldEconomicForumOurworldisexperiencingaphaseofmulti-facetedtransformationinwhichtechnologicalinnovationplaysaleadingrole.Sinceitsinceptioninthelatterhalfofthe20thcentury,artificialintelligence(AI)hasjourneyedthroughsignificantmilestones,culminatingintherecentbreakthroughofgenerativeAI.GenerativeAIpossessesaremarkablerangeofabilitiestocreate,analyseandinnovate,signallingaparadigmshiftthatisreshapingindustriesfromhealthcaretoentertainment,andbeyond.ResponsibleApplicationsandTransformation,andResilientGovernance
andRegulation.Thesepillarsunderscore
acomprehensiveend-to-endapproachtoaddresskeyAIgovernancechallengesandopportunities.Theallianceisaglobaleffortthatunitesdiverseperspectivesandstakeholders,whichallowsforthoughtfuldebates,ideationandimplementationstrategiesformeaningfullong-termsolutions.Thealliancealsoadvanceskeyperspectivesonaccessandinclusion,drivingeffortstoenhanceaccesstocriticalresourcessuchaslearning,skills,data,modelsandcompute.Thisworkincludesconsideringhowsuchresourcescanbeequitablydistributed,especiallytounderservedregionsandcommunities.Mostcritically,itisvitalthatstakeholderswhoaretypicallynotengagedinAIgovernancedialoguesaregivenaseatatthetable,ensuringthatallvoicesareincluded.Indoingso,theAIGovernanceAllianceprovidesaforumforall.AsnewcapabilitiesofAIadvanceanddrivefurtherinnovation,itisalsorevolutionizingeconomiesandsocietiesaroundtheworldatanexponentialpace.WiththeeconomicpromiseandopportunitythatAIbrings,comesgreatsocialresponsibility.Leadersacrosscountriesandsectorsmustcollaboratetoensureitisethicallyandresponsiblydeveloped,deployedandadopted.The
World
Economic
Forum’s
AI
Governance
Alliance(AIGA)standsasapioneeringcollaborativeeffort,unitingindustryleaders,governments,academicinstitutions
and
civil
society
organizations.
The
alliancerepresentsasharedcommitmenttoresponsibleAIdevelopmentandinnovationwhileupholdingethicalconsiderationsateverystageoftheAIvaluechain,fromdevelopmenttoapplicationandgovernance.Thealliance,ledbytheWorldEconomicForumincollaborationwithIBMConsultingandAccentureasknowledgepartners,ismadeupofthreecoreworkstreams–SafeSystemsandTechnologies,Aswenavigatethedynamicandever-evolvinglandscapeofAIgovernance,theinsightsfromtheAIGovernanceAllianceareaimedatprovidingvaluableguidancefortheresponsibledevelopment,adoptionandoverallgovernance
ofgenerativeAI.Weencourage
decision-makers,
industry
leaders,
policy-makersandthinkersfrom
around
theworldtoactivelyparticipateinourcollectiveeffortstoshapeanAI-drivenfuturethatupholdssharedhumanvaluesandpromotesinclusivesocietalprogressforeveryone.AIGovernanceAlliance2Introduction
tothebriefingpaperseriesTheAIGovernanceAlliancewaslaunchedinJune2023withtheobjectiveofprovidingguidanceontheresponsibledesign,developmentanddeploymentofartificialintelligencesystems.Sinceitsinception,morethan250membershavejoinedthealliancefromover200organizationsacrosssixcontinents.Theallianceiscomprisedofasteeringcommitteealongwiththreeworkinggroups.businesstransformationforresponsiblegenerativeAIadoptionacrossindustriesandsectors.ThisincludesassessinggenerativeAIusecasesenablingneworincrementalvaluecreation,andunderstandingtheirimpactonvaluechainsandbusinessmodelswhileevaluatingconsiderationsforadoptionandtheirdownstreameffects.TheResilientGovernanceandRegulationworkinggroup,ledincollaborationwithAccenture,isfocusedontheanalysisoftheAIgovernancelandscape,mechanismstofacilitateinternationalcooperationtopromoteregulatoryinteroperability,aswellasthepromotionofequity,inclusionandglobalaccesstoAI.TheSteeringCommitteecomprisesleadersfromthepublicandprivatesectorsalongwithacademiaandprovidesguidanceontheoveralldirectionoftheallianceanditsworkinggroups.TheSafeSystemsandTechnologiesworkinggroup,ledincollaborationwithIBMConsulting,isfocusedonestablishingconsensusonthenecessarysafeguardstobeimplementedduringthedevelopmentphase,examiningtechnicaldimensionsoffoundationmodels,includingguardrailsandresponsiblereleaseofmodelsandapplications.AccountabilityisdefinedateachstageoftheAIlifecycletoensureoversightandthoughtfulexpansion.ThisbriefingpaperseriesisthefirstoutputfromeachofthethreeworkinggroupsandestablishesthefoundationalfocusareasoftheAIGovernanceAlliance.Inatimeofrapidchange,theAIGovernanceAllianceseekstobuildamultistakeholdercommunityoftrustedvoicesfromacrossthepublic,private,civilsocietyandacademicspheres,united,totacklesomeofthemostchallengingandpotentiallymostrewardingissuesincontemporaryAIgovernance.TheResponsibleApplicationsandTransformationworkinggroup,ledincollaborationwithIBMConsulting,isfocusedonevaluatingAIGovernanceAlliance3ReadingguideThis
paper
series
is
composed
of
three
briefing
papersthathavebeengroupedintothematiccategoriesaccordingto
the
threeworkinggroupsof
the
alliance.policies,principlesandpracticesthatgoverntheethicaldevelopment,deployment,useandregulationofAItechnologies,theResilientGovernanceandRegulationbriefingpaperoffersguidance.Eachbriefingpaperofthereportcanalsobereadasastand-alonepiece.Forexample,developers,adoptersandpolicy-makerswhoare
moreinterestedinthetechnicaldimensionscaneasilyjumptotheSafeSystemsandTechnologiesbriefingpapertoobtainacontemporaryunderstandingoftheAIlandscape.
For
decision-makers
engaged
in
corporatestrategyandbusinessimplicationsofgenerativeAI,theResponsibleApplicationsandTransformationbriefingpaperoffersspecificcontext.Forbusinessleadersandpolicy-makersoccupiedwiththelaws,Whileeachbriefingpaperhasauniquefocusarea,manyimportantlessonsarelearnedattheintersectionofthesevaryingmultistakeholdercommunities,alongwiththeconsensusandknowledgethatemanatefromeachworkinggroup.Therefore,manyofthetakeawaysfromthisbriefingpaperseriesshouldbeviewedattheintersectionofeachworkinggroup,wherefindingsbecomeadditiveandareenhancedincontextandinterrelationwithoneanother.AI
Governance
AllianceBriefing
PaperSeriesJA
N
U
A
R
Y
2
0
24Theme1SafeSystemsandTechnologiesTheme2ResponsibleApplicationsTheme3ResilientGovernanceandRegulationandTransformation1/3
AIGovernanceAlliance2/3
AIGovernanceAlliance3/3
AIGovernanceAllianceBriefingPaperSeries2024BriefingPaperSeries2024BriefingPaperSeries2024PresidioAIFramework:Towards
Safe
GenerativeAIModelsUnlocking
ValueGenerative
AIGovernance:from
Generative
AI:Guidance
for
ResponsibleTransformationShapingaCollectiveGlobalFutureIN
C
O
L
LA
B
O
RAT
IO
NW
IT
H
A
C
C
E
N
TU
R
EIN
C
O
L
LA
B
O
RAT
IO
NW
IT
H
IB
M
C
O
N
S
U
LT
IN
GIN
C
O
L
LA
B
O
RAT
IO
NW
IT
H
IB
M
C
O
N
S
U
LT
IN
GAIGovernanceAlliance4AIGovernance
AllianceSteeringCommitteeNickCleggAndrewNgPresident,GlobalAffairs,MetaFounder,
DeepLearning.AIGaryCohnSabastianNilesVice-Chairman,IBMPresidentandChiefLegalOfficer,
SalesforceSadieCreeseOmarSultanAlOlamaProfessorofCybersecurity,UniversityofOxfordMinisterofStateforArtificialIntelligence,UnitedArabEmiratesOritGadieshChairman,Bain&CompanyLynne
ParkerAssociateVice-ChancellorandDirector,AITennessee
Initiative,UniversityofTennesseePaulaIngabireMinisterofInformationCommunicationTechnology
ofRwandaBradSmithVice-ChairandPresident,MicrosoftDaphneKollerFounderandChiefExecutiveOfficer,
InsitroMustafaSuleymanCo-FounderandChiefExecutiveOfficer,InflectionAIXueLanProfessor;Dean,SchwarzmanCollege,Tsinghua
UniversityJosephineTeoMinisterforCommunicationsandInformationMinistryofCommunicationsandInformation(MCI)ofSingaporeAnnaMakanjuVice-President,GlobalAffairs,OpenAIDurgaMalladiKentWalkerSeniorVice-President,QualcommPresident,GlobalAffairs,GoogleAIGovernanceAlliance5GlossaryTerminology
inAIisafast-movingtopic,andthesametermcanhavemultiplemeanings.Theglossarybelowshouldbeviewedasasnapshotofcontemporarydefinitions.Mis/disinformation:Misinformationinvolvesthedisseminationofincorrectfacts,whereindividualsmayunknowinglyshareorbelievefalseinformationwithouttheintenttomislead.DisinformationinvolvesthedeliberateandintentionalspreadofArtificialintelligencesystem:amachine-basedsystemthat,forexplicitorimplicitobjectives,infers,fromtheinputitreceives,howtogenerateoutputssuchaspredictions,content,recommendationsordecisionsthatcaninfluencephysicalorvirtualenvironments.DifferentAIsystemsvaryintheirlevelsofautonomyandfalseinformationwiththeaimofmisleadingothers.4Modeldriftmonitoring:Theactofregularlycomparingmodelmetricstomaintainperformancedespitechangingdata,adversarialinputs,noiseandexternalfactors.adaptivenessafterdeployment.1Modelhyperparameters:Adjustableparametersofamodelthatmustbetunedtoobtainoptimalperformance(asopposedtofixedparametersofamodel,definedbasedonitstrainingset).CausalAI:AImodelsthatidentifyandanalysecausalrelationshipsindata,enablingpredictionsanddecisionsbasedontheserelationships.CausalinferencemodelsprovideresponsibleAIbenefits,includingexplainabilityandbiasreductionthroughformalizationsoffairness,aswellascontextualisationformodelreasoningandoutputs.TheintersectionandexplorationofcausalandgenerativeAImodelsisanewconversation.Multi-modalAI:AItechnologycapableofprocessingandinterpretingmultipletypesofdata(liketext,images,audio,video),potentiallysimultaneously.Itintegratestechniquesfromvariousdomains(naturallanguageprocessing,computervision,audioprocessing)formorecomprehensiveanalysisandinsights.Fine-tuning:Theprocessofadaptingapre-trainedmodeltoperformaspecifictaskbyconductingadditionaltrainingwhileupdatingthemodel’sexistingparameters.Promptengineering:Theprocessofdesigningnaturallanguagepromptsforalanguagemodeltoperformaspecifictask.Foundationmodel:AfoundationmodelisanAImodelthatcanbeadaptedtoawiderangeofdownstreamtasks.Foundationmodelsaretypicallylarge-scale(e.g.billionsofparameters)generativemodelstrainedonavastarrayofdata,encompassingbothlabelledandunlabelleddatasets.Retrievalaugmentedgeneration:Atechniqueinwhichalargelanguagemodelisaugmentedwithknowledgefromexternalsourcestogeneratetext.Intheretrievalstep,relevantdocumentsfromanexternalsourceareidentifiedfromtheuser’s
query.Inthegenerationstep,portionsofthosedocumentsareincludedinthemodelprompttogeneratearesponsegroundedintheretrieveddocuments.Frontiermodel:Thistermgenerallyreferstothemostadvancedorcutting-edgemodelsinAItechnology.Frontiermodelsrepresentthelatestdevelopmentsandareoftencharacterizedbyincreasedcomplexity,enhancedcapabilitiesandimprovedperformanceoverpreviousmodels.Parameter-efficientfine-tuning:Anefficient,low-costwayofadaptingapre-trainedmodeltonewtaskswithoutretrainingthemodelorupdatingitsweights.Itinvolveslearningasmallnumberofnewparametersthatareappendedtoamodel’s
promptwhilefreezingthemodel’s
existingparameters(alsoknownasprompt-tuning).GenerativeAI:AImodelsspecificallyintendedtoproducenewdigitalmaterialasanoutput(e.g.text,images,audio,videoandsoftwarecode),includingwhensuchAImodelsareusedinapplicationsandtheiruserinterfaces.ThesearetypicallyconstructedasmachinelearningsystemsthathavebeentrainedAIredteaming:
A
methodofsimulatingattacksbyagroupofpeopleauthorizedandorganizedtoidentifypotentialweaknesses,vulnerabilitiesandareasforimprovement.It
should
be
integral
frommodel
designtodevelopmenttodeploymentandapplication.Theredteam’s
objectiveistoimprovesecurityandrobustnessbydemonstratingtheimpactsofsuccessful
attacks
and
by
demonstrating
what
worksforthedefendersinanoperationalenvironment.onmassiveamountsofdata.2Hallucination:Hallucinationsoccurwhenmodelsproducefactuallyinaccurateoruntruthfulinformation.Often,hallucinatoryoutputispresentedinaplausibleorconvincingmanner,
makingdetectionbyendusersdifficult.Reinforcementlearningfromhumanfeedback(RLHF):Anapproachformodelimprovementwherehumanevaluatorsrankmodel-generatedoutputsforsafety,relevanceandcoherence,andthemodelisupdatedbasedonthisfeedbacktobroadlyimproveperformance.Jurisdictionalinteroperability:Theabilitytooperatewithinandacrossdifferentjurisdictionsgovernedbydifferingpolicyandregulatoryrequirements.3AIGovernanceAlliance6Releaseaccess–Agradientcoveringdifferentlevelsofaccessgranted.evaluationtoensure
thatvaluecanberealized
andchangemanagementissuccessfullyalignedwithdefinedgoalsinaresponsibleframework.5–Fullyclosed:Thefoundationmodelanditscomponents(likeweights,dataanddocumentation)arenotreleasedoutsidethecreatorgrouporsub-sectionoftheorganization.Thesameorganizationusuallydoesmodelcreationanddownstreammodeladaptation.Externalusersmayinteractwiththemodelthroughanapplication.ResponsibleAI:AIthatisdevelopedanddeployedinwaysthatmaximizebenefitsandminimizetherisksitposestopeople,societyandtheenvironment.Itisoftendescribedbyvariousprinciplesandorganizations,includingbutnotlimitedtorobustness,transparency,explainability,fairnessandequity.6––Hosted:Creatorsprovideaccesstothefoundationmodelbyhostingitontheirinfrastructure,allowinginternalandexternalinteractionviaauserinterface,andreleasingspecificmodeldetails.Responsibletransformation:TheorganizationaleffortandorientationtoharnesstheopportunitiesandbenefitsofgenerativeAIwhilemitigatingtheriskstoindividuals,organizationsandsociety.Responsibletransformationisstrategiccoordinationandchangeacrossanorganization’sgovernance,operations,talentandcommunications.Applicationprogramminginterface(API):CreatorsprovideaccesstothefoundationmodelbyhostingitontheirinfrastructureandallowingadapterinteractionviaanAPItoperformprescribedtasksandreleasespecificmodeldetails.Traceability:Determiningtheoriginalsourceandfactsofthegeneratedoutput.Transparency:Thedisclosureofdetails(decisions,choicesandprocesses)inthedocumentationaboutthesources,dataandmodeltoenableinformeddecisionsregardingmodelselectionandunderstanding.––Downloadable:Creatorsprovideawaytodownloadthefoundationmodelforrunningontheadapters’infrastructurewhilewithholdingsomeofitscomponents,liketrainingdata.Usagerestriction:Theprocessofrestrictingtheusageofthemodelbeyondtheintendedusecases/purposetoavoidunintendedconsequencesofthemodel.Fullyopen:Creatorsreleaseallmodelcomponents,includingallparameters,weights,modelarchitecture,trainingcode,dataanddocumentation.Watermarking:Theactofembeddinginformationinto
outputs
created
by
AI
(e.g.
images,
videos,
audio,text)forthepurposesofverifyingtheauthenticityoftheoutput,identityand/orcharacteristicsofitsResponsibleadoption:TheadoptionofindividualusecasesandopportunitieswithintheresponsibleAIframeworkofanorganization.Itrequires
thoroughprovenance,modificationsand/orconveyance.7Endnotes1.2.3.4.5.6.7.“OECDAIPrinciplesoverview”,OrganisationforEconomicCo-operationandDevelopment(OECD)AIPolicyObservatory,2023,https://oecd.ai/en/ai-principles.OECD,G7HiroshimaProcessonGenerativeArtificialIntelligence(AI)Towardsa
G7CommonUnderstandingonGenerativeAI,2023,/publications/g7-hiroshima-process-on-generative-artificial-intelligence-ai-bf3c0c60-en.htm.WorldEconomicForum,InteroperabilityIntheMetaverse,2023,/publications/interoperability-in-the-metaverse/.WorldEconomicForum,ToolkitforDigitalSafetyDesignInterventions
andInnovations:TypologyofOnlineHarms,2023,/publications/toolkit-for-digital-safety-design-interventions-and-innovations-typology-of-online-harms/.Solaiman,Irene,“TheGradientofGenerativeAIRelease:MethodsandConsiderations”,HuggingFace,2023,/abs/2302.04844.WorldEconomicForum,ThePresidioRecommendationsonResponsibleGenerativeAI,2023,/publications/the-presidio-recommendations-on-responsible-generative-ai/.TheWhiteHouse,ExecutiveOrderontheSafe,Secure,
andTrustworthy
DevelopmentandUseofArtificialIntelligence,2023:/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/.AIGovernanceAlliance71/3AIGovernanceAllianceBriefingPaperSeries
2024Presidio
AI
Framework:Towards
Safe
GenerativeAI
ModelsI
N
C
O
L
L
A
B
O
R
A
T
I
O
NW
I
T
H
I
B
M
C
O
N
S
U
L
T
I
N
GCoverimage:MidJourneyContentsExecutivesummary101112131515161617181922Introduction1IntroducingthePresidioAIFramework2ExpandedAIlifecycle3GuardrailsacrosstheexpandedAIlifecycle3.1Foundationmodelbuildingphase3.2Foundationmodelreleasephase3.3Modeladaptationphase4ShiftingleftforoptimizedriskmitigationConclusionContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.©2024WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.1/3:PresidioAIFramework9Executive
summaryThePresidioAIFrameworkaddressesgenerativeAIrisksbypromotingsafety,ethics,andinnovationwithearlyguardrails.TheriseofgenerativeAIpresentssignificant1.
ExpandedAIlifecycle:Thiselementoftheframeworkestablishesacomprehensiveend-to-endviewofthegenerativeAIlifecycle,signifyingvaryingactorsandlevelsofresponsibilityateachstage.opportunitiesforpositivesocietaltransformations.Atthesametime,generativeAImodelsaddnewdimensionstoAIriskmanagement,encompassingvariousriskssuchashallucinations,misuse,lackoftraceabilityandharmfuloutput.Therefore,itisessentialtobalancesafety,ethicsandinnovation.2.
Expandedriskguardrails:TheframeworkdetailsrobustguardrailstobeconsideredatdifferentstepsofthegenerativeAIlifecycle,emphasizingpreventionratherthanmitigation.Thisbriefingpaperidentifiesalistofchallengestoachievingthisbalanceinpractice,suchaslackofacohesiveviewofthegenerativeAImodellifecycleandambiguityintermsofthedeploymentandperceivedeffectivenessofvaryingsafetyguardrailsthroughoutthelifecycle.Amidthesechallenges,therearesignificantopportunities,includinggreaterstandardizationthroughsharedterminologyandbestpractices,facilitatingacommonunderstandingoftheeffectivenessofvariousriskmitigationstrategies.3.
Shift-leftmethodology:Thismethodologyproposestheimplementationofguardrailsattheearliest
stage
possible
in
the
generative
AI
life
cycle.Whileshift-leftisawell-establishedconceptinsoftwareengineering,
its
application
in
the
contextofgenerativeAIpresentsauniqueopportunitytopromotemorewidespreadadoption.Inconclusion,thepaperemphasizestheneedforgreatermultistakeholdercollaborationbetweenindustrystakeholders,policy-makersandThisbriefingpaperpresentsthePresidioAIFramework,whichprovidesastructuredapproachtothesafedevelopment,deploymentanduseofgenerativeAI.Indoingso,theframeworkhighlightsgapsandopportunitiesinaddressingsafetyconcerns,viewedfromtheperspectiveoffourprimaryactors:AImodelcreators,AImodeladapters,AImodelusers,andAIapplicationusers.Sharedresponsibility,earlyriskidentificationandproactiveriskmanagementthroughtheimplementationofappropriateguardrailsareemphasizedthroughout.organizations.ThePresidioAIFrameworkpromotessharedresponsibility,earlyriskidentificationandproactiveriskmanagementingenerativeAIdevelopment,usingguardrailstoensureethicalandresponsibledeployment.Thepaperlaysthefoundationforongoingsafety-relatedworkoftheAIGovernanceAllianceandtheSafeSystemsandTechnologiesworkinggroup.Futureworkwillexpandonthecoreconceptsandcomponentsintroducedinthispaper,
includingtheprovisionofamoreexhaustivelistofknownandnovelThePresidioAIFrameworkconsistsofthreecorecomponents:guardrails,alongwithachecklisttooperationalizetheframeworkacrossthegenerativeAIlifecycle.1/3:PresidioAIFramework
10IntroductionThecurrentAIlandscapeincludesbothchallengesandopportunitiesforprogresstowardssafegenerativeAImodels.ThisbriefingpaperoutlinesthePresidioAIdiversity.However,
theavailabilityofallthemodelcomponents(e.g.weights,technicaldocumentationandcode)couldalsoamplifyrisksandreduceguardrails’effectiveness.ThereisaneedforcarefulanalysisofrisksandcommonconsensusamongtheuseofguardrailsFramework,providingastructuredapproachtoaddressingbothtechnicalandproceduralconsiderationsforsafegenerativeartificialintelligence(AI)models.Theframeworkcentresonfoundationmodelsandincorporatesrisk-mitigationstrategiesthroughouttheentirelifecycle,encompassingcreation,adaptationandeventualretirement.InformedbythoroughresearchintothecurrentAIlandscapeandinputfromamultistakeholdercommunityandpractitioners,theframeworkunderscorestheimportanceofestablishedsafetyguidelinesandrecommendationsviewedthroughatechnicallens.NotablechallengesintheexistinglandscapeimpactingthedevelopmentanddeploymentofsafegenerativeAIinclude:considering
the
gradient
of
release;
that
is,
varying2levelsatwhichAImodelsareaccessibleoncereleased,fromfullyclosedtofullyopen-sourced.Simultaneously,therearesomeidentifiedopportunitiesforprogresstowardssafety,suchas:–Standardization:Bylinkingthetechnicalaspectsateachphaseofdesign,developmentandreleasewiththeircorrespondingrisksandmitigations,thereistheopportunityforbringingattentiontosharedterminologyandbestpractices.Thismaycontributetowardsgreateradoptionofnecessarysafetymeasuresandpromotecommunityharmonizationacrossdifferentstandardsandguidelines.–Fragmentation:Aholisticperspective,whichcoverstheentirelifecycleofgenerativeAImodelsfromtheirinitialdesigntodeploymentandthecontinuousstagesofadaptationanduse,iscurrentlymissing.Thiscanleadtofragmentedperceptionsofthemodel’s
creationandtherisksassociatedwithitsdeployment.–Stakeholdertrustandempowerment:Pursuingclarityandagreementontheexpectedriskmitigationstrategies,wherethesearemosteffectivelylocatedinthemodellifecycleandwhoisaccountableforimplementationpavesthewayforstakeholderstoimplementtheseproactively.Thisimprovessafety,preventsadverseoutcomesforindividualsandsociety,andbuildstrustamongallstakeholders.––Vague
definitions:Ambiguityandlackofcommonunderstandingofthemeaningofsafety,risks
(e.g.traceability),andgeneral1safetymeasures(e.g.redteaming)atthefrontierofmodeldevelopment.Guardrailambiguity:Whilethereisagreementontheimportanceofrisk-mitigationstrategies–knownasguardrails–clarityislackingregardingaccountability,effectiveness,actionability,applicability,limitationsandatwhatstagesoftheAIdesign,developmentandreleaselifecyclevaryingguardrailsshouldbeimplemented.WhilethisbriefingpaperdetailsthegenerativeAImodellifecyclealongwithsomeguardrails,itisbynomeansexhaustive.Sometopicsoutsidethispaper’s
scopeincludeadiscussionofcurrentorfuturegovernmentregulationsofAIrisksandmitigations(thisiscoveredintheResilientGovernanceworkinggroupbriefingpaper)orconsiderationofdownstreamimplementationanduseofspecificAIapplications.–Modelaccess:Anopenapproachpresentssignificantopportunitiesforinnovation,greateradoptionandincreasedstakeholderpopulation1/3:PresidioAIFramework
11Introducing
the1Presidio
AIFrameworkAstructuredapproachthatemphasizessharedresponsibilityandproactiveriskmitigationbyimplementingappropriateguardrailsearlyinthegenerativeAIlifecycle.Thosereleasing,adaptingorusingfoundationmodelsoftenfacechallengesininfluencingtheoriginalmodeldesignorsettingupthenecessaryinfrastructureforbuildingfoundationmodels.Thecombi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高二上学期生物学浙科版(2019)期末模拟测试卷A卷(含解析)
- 3.1 蜀道难第2课时 课件 -2024-2025学年统编版高中语文选择性必修下册
- 2024湖区生态有机鱼品牌全年营销方案
- 经络腧穴学知到智慧树章节测试课后答案2024年秋湖南中医药大学
- 培训课件美国硕士留学科学选校方式
- 汽车生产管理课件
- 护士个人事迹(22篇)
- 广州黄埔区第二中学2025届高三下学期第六次检测语文试卷含解析
- 林业碳汇合同模板
- 粮库空调合同
- 新公司法修订宣讲 -新《公司法》修订要点解读
- 2024-2030年中国知识产权代理行业市场发展分析及投资前景分析报告
- 现代文秘-职业生涯规划
- 医院维稳工作方案及措施
- 中国画材料与技法实践智慧树知到期末考试答案章节答案2024年华侨大学
- 《纪律处分条例》测试题(4套含答案)
- 2024年02月宁波市人民检察院2024年面向社会公开招录7名司法雇员笔试参考题库附带答案详解
- 2012注册结构工程师考试基础考试一级真题及答案
- 《窄带物联网(NB-IoT)原理与技术》课件第5章
- 微观经济学题库(附答案)
- 2024年动画制作员(高级工)理论复习备考试题库-上(单选题部分)
评论
0/150
提交评论