版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、已知锐角,如图,(1)在射线上取点,,分别以点为圆心,,长为半径作弧,交射线于点,;(2)连接,交于点.根据以上作图过程及所作图形,下列结论错误的是(
)A. B.C.若,则 D.点在的平分线上2、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则∠COF的度数是()A.74° B.76° C.84° D.86°3、一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40°4、若一个正多边形的一个外角是60°,则这个正多边形的边数是(
)A.10 B.9 C.8 D.65、如图,AD是的角平分线,,垂足为F,,和的面积分别为60和35,则的面积为A.25 B. C. D.二、多选题(5小题,每小题4分,共计20分)1、(多选)如图,在Rt△ABC中,∠BAC=90°,∠ACQ=∠BCQ,AD⊥BC,AE=CE,AD与CQ交于点N,BE与CQ交于点M,下面说法正确的是(
)······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A.S△ABE=S△BCE B.∠AQN=∠ANQ C.∠BAD=2∠ACQ D.AD•BC=AB•AC2、如图,已知,下列结论正确的有()A. B. C. D.△≌△3、如图,在中,,,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是(
)A. B. C. D.4、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是(
)A.12米 B.10米 C.15米 D.8米5、如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是()A.△AOD≌△BOC B.△APC≌△BPD C.点P在∠AOB的平分线上 D.CP=DP第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图点D、E分别在的边、上,与交于点F,,则_______.2、如果一个正多边形的一个内角是135°,则这个正多边形是_____.3、如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······CE相交于点······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、如图,在四边形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分线交于点O1,再作∠O1DC、∠O1CD的平分线交于点O2,则∠O2的度数为_______________.5、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.四、解答题(5小题,每小题8分,共计40分)1、已知,在四边形中,,,分别为四边形的外角,的平分线.
(1)如图1,若,求的度数;(2)如图2,若,交于点,且,,求的度数.2、如图,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度数.3、已知a,b,c是的三边长,且,若三角形的周长是小于18的偶数.(1)求c的值;(2)判断的形状.4、如图,,,垂足分别为与相交于点,.(1)求证:;(2)在不添加任何辅助线的情况下,请直接写出图中四对全等的三角形..5、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······-参考答案-一、单选题1、C【解析】【分析】根据题意可知,即可推断结论A;先证明,再证明即可证明结论B;连接OP,可证明可证明结论D;由此可知答案.【详解】解:由题意可知,,,故选项A正确,不符合题意;在和中,,,在和中,,,,故选项B正确,不符合题意;连接OP,,,在和中,,,,点在的平分线上,故选项D正确,不符合题意;若,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······而根据题意不能证明,故不能证明,故选项C错误,符合题意;故选:C.【考点】本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键.2、C【解析】【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意得:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∴∠BOE=180°﹣72°﹣60°=48°,∴∠COF=360°﹣108°﹣48°﹣120°=84°,故选:【考点】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.3、C【解析】【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180°,且∠A=60°,∠B=75°,所以∠C=180°–60°–75°=45°.【考点】三角形内角和定理是常考的知识点.4、D【解析】【分析】根据多边形的外角和等于360°计算即可.【详解】解:360°÷60°=6,即正多边形的边数是6.故选:D.【考点】本题考查了多边形的外角和定理,掌握多边形的外角和等于360°,正多边形的每个外角都相等是解题的关键.5、D【解析】【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解即可.【详解】如图,过点D作于H,是的角平分线,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······在和中,,≌,,在和中,≌,,和的面积分别为60和35,,=12.5,故选D.【考点】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键.二、多选题1、ABCD【解析】【分析】根据三角形中位线的概念利用等底同高三角形面积相等判断①;结合三角形外角的性质和同角的余角相等判断②;根据同角的余角相等和角平分线的定义判断③;利用三角形的面积公式判断④.【详解】解:∵AE=CE,∴△ABE与△BCE等底同高,∴S△ABE=S△BCE,故A正确;在Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠ABC+∠ACB=90°,∠BAD+∠ABC=90°,∴∠ABC=∠DAC,∠BAD=∠ACD,∴∠AQN=∠ABC+∠BCQ,∠ANQ=∠DAC+∠ACQ,∵∠ACQ=∠BCQ,∴∠AQN=∠ANQ,故B正确;∠BAD=∠ACD=2∠ACQ,故C正确;∵,∴,故D正确,故选:ABCD.【考点】此题考查了三角形中线的性质,角平分线的定义,同角的余角相等等知识,题目难度不大,理解相关的概念正确推理论证是解题的关键.2、ACD······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】只要证明△ABE≌△ACF,△ANC≌△AMB,利用全等三角形的性质即可一一判断.【详解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,AB=AC,∴∠BAE−∠BAC=∠CAF−∠BAC,即∠1=∠2,∴,故C正确;在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),故D正确;∴CN=BM.∵CF=BE,∴EM=FN,故A正确,CD与DN的大小无法确定,故B错误.故选:ACD.【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.3、ACD【解析】【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠DBC,然后利用三角形的外角性质求出∠DOC,再根据邻补角可得∠ACE=120°,由角平分线的定义求出∠ACD=60°,再利用三角形的内角和定理列式计算即可∠BDC,根据BD平分∠ABC和CD平分∠ACE,可得AD平分∠BAC的邻补角,由邻补角和角平分线的定义可得∠DAC.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠DBC=∠ABC=×50°=25°,∵∠DOC是△OBC的外角,∴∠DOC=∠OBC+∠ACB=25°+60°=85°,故B选项不正确;∵∠ACB=60°,∴∠ACE=180°-60°=120°,∵CD平分∠ACE,∴∠ACD=∠ACE=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD平分∠ABC,∴点D到直线BA和BC的距离相等,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴点D到直线BC和AC的距离相等,∴点D到直线BA和AC的距离相等,∴AD平分∠BAC的邻补角,∴∠DAC=(180°-70°)=55°,故D选项正确.故选ACD.【考点】本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的关键是要熟练掌握角平分线的定义,性质和判定.4、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中,<<<<符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.5、ABCD【解析】【分析】根据题中条件,由两边夹一角可得△AOD≌△BOC,得出对应角相等,又由已知得出AC=BD,可得△APC≌△BPD,同理连接OP,可证△AOP≌△BOP,进而可得出结论.【详解】解:∵OA=OB,OC=OD,∠AOB为公共角,∴△AOD≌△BOC,∴∠A=∠B,又∠APC=∠BPD,∴∠ACP=∠BDP,OA-OC=OB-OD,即AC=BD,∴△APC≌△BPD,∴AP=BP,CP=DP,连接OP,即可得△AOP≌△BOP,得出∠AOP=∠BOP,∴点P在∠AOB的平分线上.故答案选:ABCD【考点】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······三、填空题1、11【解析】【分析】根据,,得出三角形面积之间的数量关系,设,,则,,列出二元一次方程组,解方程即可解答.【详解】如图:连接设,,则,,,,解得:故答案为:【考点】本题考查了三角形面积之间的数量关系,解二元一次方程,根据线段之间的数量关系得出三角形的面积关系,正确列出二元一次方程是解题关键.2、正八边形【解析】【分析】根据正多边形的外角和为即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴它的每一个外角为45°.又因为多边形的外角和恒为360°,360°÷45°=8,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故答案为:正八边形.【考点】本题主要考查正多边形的外角和,掌握正多边形的外角和是解决问题的关键.3、123【解析】【分析】根据折叠前后对应角相等和三角形内角和定理可得∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,再求出∠DAC,根据三角形外角的性质可求得m.【详解】解:∵,,∴∠BAC=180°-18°-29°=133°,∵沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,∴∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,∴∠DAC=360°-∠BAD-∠BAC=94°,∴∠CFD=∠ACE+∠DAC=29°+94°=123°,即m=123,故答案为:123.【考点】本题考查三角形内角和定理和外角定理,折叠的性质.理解折叠前后对应角相等是解题关键.4、【解析】【分析】先根据、的平分线交于点,得出,再根据、的平分线交于点,得出,再进行计算即可【详解】解:∵在四边形ABCD中,∠A+∠B=210°,∴∠ADC+∠DCB=150°,、的平分线交于点,,、的平分线交于点,=,∴∠O2=180°-37.5°=,故答案为:【考点】本题主要考查了多边形的内角与外角以及角平分线的定义的运用,解决问题的关键是找出操作的变化规律,得到∠O2与∠ADC+∠DCB之间的关系.5、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.四、解答题1、(1);(2).【解析】【分析】(1)如图1,过点C作CH∥DF,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【考点】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······2、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根据三角形内角和定理,即可得出结论.【详解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用.3、(1)4或6;(2)等腰三角形【解析】【分析】(1)根据三角形三边关系和周长的最小值列式计算即可;(2)根据(1)可得c,根据已知条件得到a=c,即可得到结果;【详解】(1)∵的周长为,且周长小于18,即,.又∵三角形的周长是小于18的偶数,即为偶数,∴c为小于8的偶数,则c可以是2,4,6.∵当时,,不能构成三角形,故舍去,∴c的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具导购实战训练绝对成交吴飞彤
- 2024至2030年中国弹力罗缎面料行业投资前景及策略咨询研究报告
- 制造业主要经济业务的核算
- 2024至2030年中国分布移动式切割机数据监测研究报告
- 2024年中国防滑剂市场调查研究报告
- 2024年中国豪华型易拉宝市场调查研究报告
- 2024年中国耐温耐碱消泡剂市场调查研究报告
- 2024年中国塑胶五金制品市场调查研究报告
- 高中数学总复习系列之集合
- 大学三年专科专升本规划计划书
- 人音版小学音乐五年级上册教案全册
- 企业工商过户合同模板
- 雨污水管合同模板
- 《篮球:行进间单手肩上投篮》教案(四篇)
- 2024-2025学年部编版初一上学期期中历史试卷与参考答案
- 2024年山东地区光明电力服务公司第二批招聘高频难、易错点500题模拟试题附带答案详解
- 职业技能大赛-鸿蒙移动应用开发赛初赛理论知识考试及答案
- 2024山东高速集团限公司招聘367人高频难、易错点500题模拟试题附带答案详解
- DB34T 3730-2020 耕地损毁程度鉴定技术规范
- 【人教版】《劳动教育》二下 劳动项目一 洗头 课件
- 第三单元长方形和正方形(单元测试)-2024-2025学年三年级上册数学苏教版
评论
0/150
提交评论