综合解析人教版数学八年级上册期中模拟考考卷(Ⅲ)(解析版)_第1页
综合解析人教版数学八年级上册期中模拟考考卷(Ⅲ)(解析版)_第2页
综合解析人教版数学八年级上册期中模拟考考卷(Ⅲ)(解析版)_第3页
综合解析人教版数学八年级上册期中模拟考考卷(Ⅲ)(解析版)_第4页
综合解析人教版数学八年级上册期中模拟考考卷(Ⅲ)(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、如图,已知和都是等腰三角形,,交于点F,连接,下列结论:①;②;③平分;④.其中正确结论的个数有(

)A.1个 B.2个 C.3个 D.4个2、下列说法中错误的是()A.三角形的一个外角大于任何一个内角B.有一个内角是直角的三角形是直角三角形C.任意三角形的外角和都是D.三角形的中线、角平分线,高线都是线段3、如图,,则A.45° B.55° C.35° D.65°4、作平分线的作图过程如下:作法:(1)在和上分别截取、,使.(2)分别以,为圆心,大于的长为半径作弧,两弧交于点.(3)作射线,则就是的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是(

)A. B. C. D.5、下列多边形中,内角和最大的是(

)A. B.C. D.二、多选题(5小题,每小题4分,共计20分)1、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是(

).······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······2、如图,在中,,,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是(

)A. B. C. D.3、下列作图语句不正确的是()A.作射线AB,使AB=a B.作∠AOB=∠aC.延长直线AB到点C,使AC=BC D.以点O为圆心作弧4、一个多边形被截去一个角后,变为五边形,原来的多边形是几边形(

)A.3 B.4 C.5 D.65、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,添加一个条件可行的是(

A.AD=AE B.BD=CE C.BE=CD D.∠BAD=∠CAE第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与CE相交于点F,若,,,则________.2、如图,,,若,则线段长为______.3、如图所示,AD是△ABC中BC边上的中线,若AB=2,AC=6,则AD的取值范围是__________4、如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是__cm.5、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为________.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······四、解答题(5小题,每小题8分,共计40分)1、如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,BD=CD.求证:EB=FC.2、如图,在中,,,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.(1)如图①,过点A的直线与斜边BC不相交时,求证:①;②.(2)如图②,其他条件不变,过点A的直线与斜边BC相交时,若,,试求EF的长.3、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,,.(1)求证:;(2)求的度数.4、如图,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.求证:BC=AB+CD.5、如图,在△ABC中,AB=BC,∠ABC=60°,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点.(1)若∠DAE=15°,求证:△ABD是等腰直角三角形;(2)连CE,求证:BE=AE+CE.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······一、单选题1、C【解析】【分析】①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合即可判定.【详解】解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N∵△BAD≌△CAE∴S△BAD=S△CAE,∴∵BD=CE∴AM=AN∴平分∠BFE,无法证明AF平分∠CAD.故③错误;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴故④正确.故答案为C.【考点】本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.2、A【解析】【分析】根据三角形的性质判断选项的正确性.【详解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确.故选:A.【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质.3、B【解析】【分析】求出BE=CF,根据SSS证出△AEB≌△DFC,推出∠C=∠B,根据全等三角形的判定推出即可.【详解】解答:证明:∵,∴,∴BE=CF,在△AEB和△DFC中,,∴△AEB≌△DFC(SSS),∴∠C=∠B=55°.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出△AEB≌△DFC,注意:全等三角形的对应边相等,对应角相等.4、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.【详解】∵分别以,为圆心,大于的长为半径作弧,两弧交于点;∴CE=CD,在△OCE和△OCD中,,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故选:A.【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.5、D【解析】【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A、是一个三角形,其内角和为180°;B、是一个四边形,其内角和为360°;C、是一个五边形,其内角和为540°;D、是一个六边形,其内角和为720°;∴内角和最大的是六边形;故选D.【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.二、多选题1、BC【解析】【分析】根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边.结合题目条件“周长为12”,可得出正确答案.【详解】A.2+2<8,不能组成三角形,排除.B.5+5>2,5-5<2;且5+5+2=12;满足题意.C.4+4>4,4-4<4;且4+4+4=12;满足题意.D.3+3>5,3-3<5;但3+3+5≠12;排除.故选:BC.【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”.2、ACD【解析】【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠DBC,然后利用三角形的外角性质求出∠DOC,再根据邻补角可得∠ACE=120°,由角平分线的定义求出∠ACD=60°,再利用三角形的内角和定理列式计算即可∠BDC,根据BD平分∠ABC和CD平分∠ACE,可得AD平分∠BAC的邻补角,由邻补角和角平分线的定义可得∠DAC.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠DBC=∠ABC=×50°=25°,∵∠DOC是△OBC的外角,∴∠DOC=∠OBC+∠ACB=25°+60°=85°,故B选项不正确;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠ACE=180°-60°=120°,∵CD平分∠ACE,∴∠ACD=∠ACE=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD平分∠ABC,∴点D到直线BA和BC的距离相等,∵CD平分∠ACE∴点D到直线BC和AC的距离相等,∴点D到直线BA和AC的距离相等,∴AD平分∠BAC的邻补角,∴∠DAC=(180°-70°)=55°,故D选项正确.故选ACD.【考点】本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的关键是要熟练掌握角平分线的定义,性质和判定.3、ACD【解析】【分析】根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;.【详解】解:A、射线是不可度量的,故本选项错误;B、∠AOB=∠α,故本选项正确;C、直线向两方无限延伸没有延长线,故本选项错误;D、需要说明半径的长,故选项错误.故选:ACD.【考点】本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质.4、BCD【解析】【分析】利用直线截去多边形的一个角,注意分类讨论,直线不过多边形的顶点,过一个顶点,过两个顶点,从而可得答案.【详解】解:一个三角形被截去一个角后,得不到五边形,故不符合题意;如图,一个四边形被截去一个角后,可得到五边形,故符合题意;如图,一个五边形被截去一个角后,可得到五边形,故符合题意;······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······如图,一个六边形被截去一个角后,可得到五边形,故符合题意;故选:【考点】本题考查的是认识多边形,利用直线截去多边形的一个角所形成的新的多边形,理解截的方法是解题的关键.5、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可.【详解】解:∵在△ABC中,AB=AC,∴∠B=∠C,当AD=AE时,∴∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE,然后根据SAS或ASA或AAS可判定△ABD≌△ACE;当BD=CE时,根据SAS可判定△ABD≌△ACE;当BE=CD时,∴BE−DE=CD−DE,即BD=CE,根据SAS可判定△ABD≌△ACE;当∠BAD=∠CAE时,根据ASA可判定△ABD≌△ACE.综上所述ABCD均可判定△ABD≌△ACE.故选:ABCD.【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三、填空题1、123【解析】【分析】根据折叠前后对应角相等和三角形内角和定理可得∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,再求出∠DAC,根据三角形外角的性质可求得m.【详解】解:∵,,∴∠BAC=180°-18°-29°=133°,∵沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠DAC=360°-∠BAD-∠BAC=94°,∴∠CFD=∠ACE+∠DAC=29°+94°=123°,即m=123,故答案为:123.【考点】本题考查三角形内角和定理和外角定理,折叠的性质.理解折叠前后对应角相等是解题关键.2、8【解析】【分析】过点D作DH⊥AC于H,由等腰三角形的性质可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性质可证DH=CF,由“AAS”可证△DHE≌△FCE,可得EH=EC,即可求解.【详解】解:如图,过点D作DH⊥AC于H,在△DHE和△FCE中,故答案为8.【考点】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.3、2<AD<4【解析】【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD到E,使AD=DE,连接BE,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴BD=CD,在△ADC与△EDB中,∴△ADC≌△EDB(SAS),∴EB=AC,根据三角形的三边关系定理:6-2<AE<6+2,∴2<AD<4,故AD的取值范围为2<AD<4.【考点】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE<6+2是解此题的关键.4、4cm【解析】【分析】从三角形的一个顶点向它对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高.这条边叫做底.【详解】因为AC⊥BC,所以三角形ABD中,BD边上的高是:AC=4cm故答案为:4cm【考点】考核知识点:三角形的高.理解三角形的高的定义是关键.5、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30°所对的边等于斜边的一半,再求出DE,得到.【详解】解:的垂直平分线交于点F,(垂直平分线上的点到线段两端点距离相等)∴∵,是角平分线∴∵∴,∴【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键.四、解答题1、见解析······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【分析】根据角平分线的性质和已知条件,得出DE=DF,证明△BDE与△CDF全等,进而得出结论.【详解】证明:∵AD是∠BAC的角平分线DE⊥AB,DF⊥AC,

∴DE=DF,∠DEB=∠DFC=90°,∴△BDE与△CDF是直角三角形.在Rt△BDE与Rt△CDF中∵∴Rt△BDE≌Rt△CDF(HL).∴BE=CF.【考点】本题考查了角平分线的性质与全等三角形的判定,解题的关键是熟练掌握判定定理.2、(1)①见详解;②见详解;(2)7【解析】【分析】(1)①由条件可求得∠EBA=∠FAC,利用AAS可证明△ABE≌△CAF;②利用全等三角形的性质可得EA=FC,EB=FA,利用线段的和差可证得结论;(2)同(1)可证明△ABE≌△CAF,可证得EF=FA−EA,代入可求得EF的长.【详解】(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB与△CFA中∵,∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB与△CFA中,······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴EA=FC,EB=FA,∴EF=FA−EA=EB−FC=10−3=7.【考点】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3、(1)证明见解析;(2).【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出.(1)证明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出.4、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中:,······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外·

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论