版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省师范大附属中学中考考前最后一卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b2.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定3.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.44.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定5.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()A.众数 B.中位数 C.平均数 D.方差6.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根 B.有两个不相等的实数根C.有一个实数根 D.无实数根7.如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.8.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长 B.线段EF的长逐渐减小C.线段EF的长始终不变 D.线段EF的长与点P的位置有关9.如图中任意画一个点,落在黑色区域的概率是()A. B. C.π D.5010.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×106二、填空题(本大题共6个小题,每小题3分,共18分)11.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.12.计算(﹣a)3•a2的结果等于_____.13.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.14.方程=的解是____.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.16.分解因式:3x2-6x+3=__.三、解答题(共8题,共72分)17.(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.18.(8分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.19.(8分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.20.(8分)先化简,再求值:(1+)÷,其中x=+1.21.(8分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.22.(10分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.23.(12分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x_____购买费用(元)__________(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据二次函数的图象与性质逐一判断即可求出答案.【详解】由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向上,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=<0,∴b<0,∴abc<0,故B正确;∵当x=1时,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正确;∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选D.考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.2、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.3、C【解析】
本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴.解得:k=1.故选C.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.4、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.5、B【解析】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.6、B【解析】一元二次方程的根的情况与根的判别式有关,,方程有两个不相等的实数根,故选B7、B【解析】
根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
A、不等式组的解集为x>-3,故A错误;B、不等式组的解集为x≥-3,故B正确;C、不等式组的解集为x<-3,故C错误;D、不等式组的解集为-3<x<5,故D错误.故选B.【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.8、C【解析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线9、B【解析】
抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是.故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.10、C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】
如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.【详解】如图,作BH⊥AC于H.∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.故答案为:1.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.12、﹣a5【解析】
根据幂的乘方和积的乘方运算法则计算即可.【详解】解:(-a)3•a2=-a3•a2=-a3+2=-a5.故答案为:-a5.【点睛】本题考查了幂的乘方和积的乘方运算.13、1【解析】
根据平均数的定义计算即可.【详解】解:故答案为1.【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.14、x=1【解析】
观察可得方程最简公分母为x(x−1),去分母,转化为整式方程求解,结果要检验.【详解】方程两边同乘x(x−1)得:3x=1(x−1),整理、解得x=1.检验:把x=1代入x(x−1)≠2.∴x=1是原方程的解,故答案为x=1.【点睛】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验.15、85【解析】
根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16、3(x-1)2【解析】
先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(共8题,共72分)17、(1)见解析;(2)见解析;(3)见解析,.【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.18、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OB⊥PB即可;(2)利用菱形、矩形的性质,求出圆心角∠COD即可解决问题.【详解】(1)如图连接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线;(2)①的长为cm时,四边形ADPB是菱形,∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的长=cm;②当四边形ADCB是矩形时,易知∠COD=120°,∴的长=cm,故答案为:cm,cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.19、见解析【解析】
(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF【详解】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.20、,1+【解析】
运用公式化简,再代入求值.【详解】原式===,当x=+1时,原式=.【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.21、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】
(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,∴a=-1,∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由解得x=∴点C的横坐标为∵MN=m-1,四边形MDEN是正方形,∴C(,m-1)把C点代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)∴平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(,1-m)把C点代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)∴平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.22、-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.23、(1)30x,y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房产交易合同templateincluding交易方式与支付方式
- 2024年度淘宝店铺代管理服务合同
- 运动激活照相机市场环境与对策分析
- 2024年度版权转让合同:音乐作品版权出售与授权协议
- 运载工具座椅用安全带市场发展现状调查及供需格局分析预测报告
- 石蜡纸市场需求与消费特点分析
- 贴纸文具市场发展预测和趋势分析
- 2024年度农产品采购合同模板及质量要求
- 计算机游戏卡市场发展预测和趋势分析
- 2024年度教育培训合作与发展合同
- GB/T 44831-2024皮肤芯片通用技术要求
- 2024年房地产开发建筑承包合同
- 2024年廉洁合作原则声明书
- 酒店客房清洁卫生培训制度
- 2024-2030年中国物业管理行业深度调研及发展模式分析报告
- 数学-湖北华中师范大学一附中2024高二上数学周测和解析(11月2)
- Unit 4 Section B(1a-2b)(同步课件)-2024-2025学年初中英语七年级上册同步课件(人教版2024)
- 叠栅:组件降本提效技术新变革
- 2024年医院病房药品管理制度(三篇)
- 2024新外贸加工合同参考范文
- 综合英语智慧树知到答案章节测试2023年喀什大学
评论
0/150
提交评论