版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市武进区礼嘉中学2024年中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.1 B.x C. D.2.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥3 B.a>3 C.a≤3 D.a<33.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1B.总不小于11C.可为任何实数D.可能为负数4.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣105.下列几何体中,主视图和俯视图都为矩形的是(
)A. B. C. D.6.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-47.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.(12)2016B.(12)2017C.(33)2016D.(8.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A. B. C. D.19.下列分式中,最简分式是()A. B. C. D.10.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,
将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为(
)A.12cm B.20cm C.24cm D.28cm二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是_________.12.已知一组数据-3,x,-2,3,1,6的众数为3,则这组数据的中位数为______.13.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.14.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.15.比较大小:_____1.16.若分式a2-9a+3三、解答题(共8题,共72分)17.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.18.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.19.(8分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.20.(8分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.
21.(8分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.22.(10分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)23.(12分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?24.解不等式:﹣≤1
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
根据同分母分式的加减运算法则计算可得.【详解】原式===1,故选:A.【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.2、A【解析】
先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【详解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、A【解析】
利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.4、C【解析】
本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.5、B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.6、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A.a2·a2=a4,故A选项错误;B.(-a2)3=-a6,正确;C.3a2-6a2=-3a2,故C选项错误;D.(a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.7、C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.8、B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.9、A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.10、C【解析】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径.【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm.故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】
由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【详解】∵一个正n边形的每个内角为144°,
∴144n=180×(n-2),解得:n=1.
这个正n边形的所有对角线的条数是:==2.
故答案为2.【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.12、【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
详解:∵-3,x,-1,3,1,6的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,
∴这组数的中位数是=1.
故答案为:1.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13、60.【解析】
首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.【详解】设半圆的圆心为O,连接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切线,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴点E所对应的量角器上的刻度数是60°,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.14、【解析】分析:连接BC,则∠BCE=90°,由余弦的定义求解.详解:连接BC,根据圆周角定理得,∠BCE=90°,所以cos∠BEC=.故答案为.点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.15、【解析】
先将1化为根号的形式,根据被开方数越大值越大即可求解.【详解】解:,,,故答案为>.【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.16、1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式a2∴a2解得a=1.考点:分式的值为零的条件.三、解答题(共8题,共72分)17、(1);(2)【解析】
(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为,故答案为:;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)==.【点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.18、(1)45°;(2)26°.【解析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19、(1)EH2+CH2=AE2;(2)见解析.【解析】分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.详解:(1)EH2+CH2=AE2,如图1,过E作EM⊥AD于M,∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME与△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE与△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.20、(2)1【解析】试题分析:(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==,得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三边的关系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三边的关系得BC=AC=1,AB=2BC=8,所以⊙O的半径为1.试题解析:(1)证明:连结OC,如图,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切线(2)解:连结BC,如图∵AB为直径∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半径为1.考点:圆周角定理,切线的判定定理,30°的直角三角形三边的关系21、证明见解析【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 博物馆装修施工组织设计
- 部编版四年级语文上册习作《我和-过一天》精美课件
- 六年级上册英语同步测试-Module 3 Unit 1 Collecting stamps is my hobby-外研社(三起)小学英语教学教材课件
- 《物流条码技术》课件
- 睾丸融合病因介绍
- 真菌过敏性哮喘病因介绍
- 《施工班组现场管理》课件
- 甲状腺疾病病因介绍
- 《全微分与偏导数》课件
- 沙门菌性肺炎病因介绍
- 24春国家开放大学《农业推广》调查报告参考答案
- 2024-2029年中国短视频市场运行格局分析与投资前景预测研究报告
- 麦门冬功效与作用-2024鲜版
- 医务人员一对一廉洁谈话记录范文
- 供应链合作干股入股合作协议书
- 骨折患者压疮的预防
- 臭氧层的破坏和损耗课件
- 2024年广播电视编辑记者资格综合知识考试题库(附答案)
- 家政服务员心理健康指导指南
- 污水处理项目实施重点、难点分析
- 高级氧化技术概述课件
评论
0/150
提交评论