剩余电流检测原理及失效案例分析_第1页
剩余电流检测原理及失效案例分析_第2页
剩余电流检测原理及失效案例分析_第3页
剩余电流检测原理及失效案例分析_第4页
剩余电流检测原理及失效案例分析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一个问题,什么是剩余电流?以及检测剩余电流的原理。假设有三根水管A、B、C里面的水都流进水管N。正常情况下,管子没漏时里面的水量A+B+C=N对吧,考虑水流方向,那A+B+C-N=0对吧。图中那个椭圆虚线框就是贵司产品里面的某一个用来检测A+B+C-N是不是等于0的元件。(当然,交流电)在水没漏的情况下贵司的产品检测到的剩余电流,哦不对剩余水流就等于0(当然,对电流来说,检测的是矢量和。不过这不重要,反正你也不是搞技术的。)。

如果在某种情况下,某根管破了,漏水啦。像下图这样,有一部分水流到土里去了(在电气里,我们叫接地故障)。

这个时候,虚线框就检测到A+B+C-N不等于0了,然后你们的监控系统就知道出现剩余电流哦不对,漏水了。到漏水量到达800mA时,你们的系统就会发出警报啦。第二个问题,剩余电流过大都是什么情况引起的?还是说上面的水管,既然有水漏了,那肯定是水管坏了呗。把水管换成电线/缆,就是绝缘层破坏,电“漏走了”。所以造成剩余电流过大的情况就是多数都是因为绝缘层老化、破坏、绝缘水平下降等,导致了接地故障。第三个问题,探测器测量的电流是零线的电流吗?当然不是,是检测的相线和零线的电流矢量和。就像上面的水管一样,你光检测N管,你怎么知道有漏水?

电器设备的漏电电流最大安全值是多少毫安(1)手握式用电设备为15mA;

(2)环境恶劣或潮湿场所的用电设备为6~10mA;

(3)医疗电气设备为6mA;

(4)建筑施工工地的用电设备为15~30mA;

(5)家用电器回路为30mA;

(6)成套开关柜分配电盘等为100mA;

(7)防止电气火灾为300mA。

漏电保护开关的动作电流500mA和300mA应怎样选择呢《低压配电设计规范》中要求防接地故障火灾的RCD动作值为0.5A.王厚余老师介绍说:按IEC标准这一0.5A限值是对生产、加工或储存可燃物质的BE2级火灾危险场所规定的,因为小于0.5A的电弧能量不足以引燃起火。300MA=0.3A500MA=0.5A漏电电流并不会引起火灾。火灾通常是大电流(电流的热效应),所以应该是过载与短路。是因为漏电时火线会与地接触,此时电流会很大,致使电线发热起火余钢铁股份有限公司安全环保部

唐剀

摘要:低压配电系统中漏电产生的电流和电压均可引起火灾,指出漏电仍是导致电气火灾的重要原因之一,并提出漏电的技术防范措施。关键词:漏电

漏电电流

漏电电压

漏电保护

等电位

引发电气火灾的原因主要有:短路、过负荷、接触不良、漏电、灯具和电热器具引燃可燃物等,近年来,由于漏电引起的火灾不断发生而且这种火灾比起短路等引起的火灾更具有隐蔽性,漏电失火后往往难以找出真正的原因,容易被短路等假象所掩盖,因此,危害性就更大。某公司炼钢厂转炉水泵房2006年8月15日由于低压电缆漏电引起了高低压电缆烧损事故,烧坏的电缆共计206根,造成炼钢厂三座转炉停产二天零七小时,直接修复材料费用约14.4万元。充分了解漏电的火灾危险性,加强对漏电的技术防范措施应是电气防火工作的重要任务之一。一、漏电的火灾危险性电气线路或设备绝缘损伤后,在一定的环境下,对靠近的物质(穿线金属管、电气装置金属外壳、潮湿木材等)会发生漏电,漏电可使局部物质带电会给人们造成严重的或致命的触电,所产生火花、电弧过热高温会造成火灾。目前,在低压配电系统中多采用接零保护(接地保护)及过流保护装置(熔断器等),不能防止严重的漏电短路的情况发生。1、问题的提出当电气设备发生漏电即碰壳短路时,电流将设备外壳、保护接零线(保护接地线)、零线(大地)形成闭合回路,通常漏电电流很大,会使熔断器动作而切断电源,似乎这种漏电的危险性可以避免,但如果下述原因的存在,过电流保护装置就不一定绝对可靠。(1)熔断器规格可能人为加大倍数或被铜丝代替,起不到过流保护作用。(2)电故障点可能发生在系统的足够远的未端,故障回路阻抗较大,漏电短路电流不足以使熔断器动作。(3)如果电气设备容量较大,熔体额定电流超过漏电电流,熔断器也不会动作。(4)接地装置不符合要求,造成接地电阻较大,导致漏电短路电流较小,也不会使熔断器动作。(5)当采用过电流自动保护开关时,开关失灵或脱扣电流设置量过大,自动保护开关不动作。(6)保护接零(接地)线的接线端子连接不良,造成接触电阻过大,限制了故障电流,致熔断器不动作。上述现象在实际中并不少见或存在一种或同时存在几种且不被人重视,因此漏电一旦发生,将持续存在,导致触电或电气火灾事故。2、漏电引起火灾的原因(1)漏电电流引起火灾,漏电事故故障点通常情况下接触不良,导致接触电阻较大,使过电流保护装置难以动作,同时,会在故障点处产生电弧,据测仅0.5A的电流的电弧温度可达2000℃以上,足以引燃所有可燃物。(2)保护零线或保护地线的线径大小容易被忽视,如果选择过小,当通过较大的漏电电流时,线路温升较快,同样也能引起火灾。(3)在潮湿环境下,当带电裸导线接触木材,泄漏电流流径木材表面纤维时,会使木材炭化发展成火灾事故。日本秋田大学电气工程系的教授曾做过了实验证明这一现象,从这实验也提醒我们电气线路未经穿管保护而通过可燃物时是十分危险,同时这种漏电的危险性存在于所有的配电系统中。(4)保护零线或保护地线的接线端子处连接不良也能引起火灾。相线与零线接线端子连接不良设备工作不正常,可以及时发现得到处理,而保护零线或地线的接线端子连接不良,电阻过大,设备照常工作,但故障不易发现,一旦发生漏电,由于故障点接头太松或腐蚀造成局部过热,连接端子处产生高温或电弧,能够引燃周围可燃物质或烧坏电器插座、开关等。3、造成漏电的因素造成漏电的因素很多,归纳起来,主要有以下几种:(1)低压配电系统的安装存在问题,主要表现在安装人员专业素质参差不齐,难以保证安装质量;线路的敷设过程中,线路的绝缘损伤,在潮湿或存酸碱腐蚀性的环境中,电线明敷、设备未做保护直接安装,导线接头连接质量和绝缘包扎质量不符合要求。(2)电气线路或设备疏于检查,因过负荷或使用年限较长等原因绝缘老化。(3)选用劣质的绝缘不良的电气产品。(4)外界因素:水份浸入,挤压、鼠咬等。二、漏电火灾的防范措施1、严格按照低压电气装置操作规程进行操作,非电气专业人员不准上岗作业,杜绝造成低压电缆漏电的各种人为因素。2、电气线路通过燃物时,应穿金属管或阻燃套管,采用金属管布线时,一定要防止电线绝缘层被伤,配电装置(开关、插座、配电箱)和用电设备与可燃物应保持足够的安全距离。3、装设漏电保护器。现行的低压配电系统中设置的保护接零和过流保护装置等措施不能完全有效地防止漏电火灾的发生,因此在96年施行的国际《低压配电设计规范》中有明确要求:为防止大面积停电,在电源总配电箱和用户开关箱中应分别设置漏电保护器,其额定动作电流和额定动作时间应合理配合,使之具有分级保护的功能。4、保护接零及保护接地线的截面积选择必须经过计算确定,并用碰壳短路电流较核,其接线端子必须可靠连接,不允许有松动,并经常检查其连接处。5、接地电阻应符合设计要求,电气设备的保护接地电阻值不应超过4欧姆,如果用电设备的容量较大,熔体熔断电流也较大,应增加接地线截面积或并联接地体以充分减小接地电阻值,增大漏电短路电流,有利于保护装置动作。6、实施等电位联结,所谓等电位联结是指将保护接零总线与建筑物的总水管、总煤气管、暖通管等金属管道或装置用导线联结的措施,以达到均衡建筑物等电位的目的,尤其是对于易燃易爆场所更有其不可替代的作用。漏电保护器对于单相220V线路只能提供间接接触保护,同时还存在因机件磨损,接触不良,质量不稳定等因素,而导致动作失灵的种种隐患,不能单独成为一种可靠性的保护措施,因此尚应实施等电位联结,才能有效地消除漏电的电气线路或设备与低电位的金属构件之间产生电弧、电火花的产生,即消除漏电电压引起火灾的可能.总之,低压配电系统中漏电现象产生的危险性虽然时有发生,但造成的损失是非常巨大,必须引起高度重视.人体所能承受的最大电流是多少?行业规定安全电压为36V,安全电流为10mA,原因如下:

电击对人体的危害程度,主要取决于通过人体电流的大小和通电时间长短。电流强度越大,致命危险越大;持续时间越长,死亡的可能性越大。能引起人感觉到的最小电流值称为感知电流,交流为1mA,直流为5mA;人触电后能自己摆脱的最大电流称为摆脱电流,交流为10mA,直流为50mA;在较短的时间内危及生命的电流称为致命电流,如100mA的电流通过人体1s,可足以使人致命,因此致命电流为50mA。在有防止触电保护装置的情况下,人体允许通过的电流一般可按30mA考虑。

人体对电流的反映:

8~10mA手摆脱电极已感到困难,有剧痛感(手指关节).

20~25mA手迅速麻痹,不能自动摆脱电极,呼吸困难.

50~80mA呼吸困难,心房开始震颤.

90~100mA呼吸麻痹,三秒钟后心脏开始麻痹,停止跳动.

根据欧姆定律(I=U/R)可以得知流经人体电流的大小与外加电压和人体电阻有关。人体电阻除人的自身电阻外,还应附加上人体以外的衣服、鞋、裤等电阻,虽然人体电阻一般可达5000Ω,但是,影响人体电阻的因素很多,如皮肤潮湿出汗、带有导电性粉尘、加大与带电体的接触面积和压力以及衣服、鞋、袜的潮湿油污等情况,均能使人体电阻降低,所以通常流经人体电流的大小是无法事先计算出来的。因此,为确定安全条件,往往不采用安全电流,而是采用安全电压来进行估算:一般情况下,也就是干燥而触电危险性较大的环境下,安全电压规定为36V,对于潮湿而触电危险性较大的环境(如金属容器、管道内施焊检修),安全电压规定为12V,这样,触电时通过人体的电流,可被限制在较小范围内,可在一定的程度上保障人身安全。工程材料失效分析姓名:学号:案例一乙烯裂解炉炉管破裂原因分析某石化公司化工一厂裂解车间CBL一Ⅲ型乙烯裂解炉于1998年9月投入运行,1999年4月检查发现一根裂解炉管发生泄漏。为查明炉管泄漏原因,对失效炉管进行了综合分析。CBL一Ⅲ型乙烯裂解炉炉管工作温度为1050~llOO℃,材质化学成分(质量分数)为0.35~0.60%C;1.0%~2.0%Si;1.O%~1.50%Mn;33%~38%Ni;23%~28%Cr及微量Nb.Ti.Zr等。宏观观察失效炉管表面可以看出,泄漏部位炉管内、外壁均有两个孔坑,两个孔坑在内、外表面相互对应,孔坑边缘金属略有凸起,呈火山口状。仔细观察发现,在内壁两个孔坑附近表面有一约3mmxlmm凸棱,凸棱略高于附近炉管表面(图11-1、图11-2)。化学成分分析结果表明,失效炉管化学成分符合厂家技术要求。金相检查结果表明,失效炉管显微组织基体为奥氏体,晶界分布有骨架状碳化物,晶内和晶界分布有一定数量的颗粒状碳化物(图11-3)。能谱分析结果表明,这些颗粒状碳化物为Nb.Zr.Ti或Cr的碳化物。晶界分布的骨架状碳化物系以铬为主的碳化物。首先,采用扫描电镜观察了泄漏部位炉管内、外表面的放大形貌,观察发现,所有孔坑均存在白亮色块状物。通常,不导电的非金属氧化物或金属氧化物在电子束作用下因积累电荷而呈白亮色。能谱分析结果表明,白亮色块状物含有很高的稀土铈。分析认为,白亮色块状物为稀土氧化物。在泄漏部位,分别在内壁凸棱和孔坑两处,垂直于内表面制备了炉管横截面金相试样。可以看出,不论是凸棱对应部位,还是炉管内、外表面两个孔坑之间,炉管横截面均分布有宏观深灰色金属夹杂物,夹杂物在内、外表面两个孔坑之间连续贯通(图11-4)。在扫描电镜下进一步观察、分析结果表明,两个横截面深灰色区域同样是稀土铈的氧化物(图11-5)。采用微型拉伸试样,对失效炉管进行了1100℃短时高温拉伸试验,其结果如表11-1所示。可以看出,失效炉管1100℃高温短时拉伸性能低于厂家相关技术要求。失效炉管显微组织为奥氏体,晶界分布有骨架状碳化物,晶内和晶界分布有一定数量的颗粒状碳化物。这种骨架状碳化物是铸件在缓慢的冷却速度下通过奥氏体温度范围时形成的,这种组织会降低逐渐的塑性和韧性。炉管在高温下长期运行,材质受到严重损伤,材料的微观组织恶化,碳化物会发生严重粗化,使得炉管的高温持久性能下降。因为在热处理时没有消除这些骨架状碳化物和颗粒状碳化物,炉管中出现的少量气孔组织会集中在碳化物的位置上形成裂纹,或者工作应变疲劳裂纹会沿着晶界碳化物发展,造成整块的沿晶剥落,出现了图中的孔坑。失效炉管的泄露部位内、外孔坑处存在稀土氧化物。这种稀土夹杂物聚集在晶界处,造成夹杂物与集体之间界面处的应力集中。晶界处聚集的稀土氧化物割裂了材料的连续性,最终在晶界处剥落失效。浇注中不可避免的会形成夹杂,该炉管成分中的锰含量过高,高温作业时形成锰的氧化物,锰的氧化物容易形成形核的质点,稀土的活性很大,会有部分稀土逐渐吸附到锰的氧化物上形成稀土夹杂物。夹杂物偏聚在晶界附近导致了炉管的失效,夹杂物的存在改变了晶界原有的特性,其断裂往往起始于这些地方,最终导致材料力学性能的下降。这也解释了炉管在高温拉伸性能低于厂家要求的现象。因此得出结论认为炉管的失效原因是浇注冷却时形成的晶界碳化物网状结构和在晶界分布的稀土夹杂物。因此需要对炉管进行适当的热处理,例如正火后回火消除网状组织。对于稀土夹杂物应该改善稀土夹杂物的形态,使其大部分呈现球状,还是需要调整材料的成分,改善稀土夹杂物的形貌。案例二汽轮机末级叶片断裂原因分析某电厂2号发电机组运行一年半后出现低真空,负荷降至22万kW,系统电压明显降低,随即甩掉负荷。重新启动电源泵不能工作。经化验,复水器水质硬度偏高,凝结器大量漏水。进一步检查发现,有20根铜管发生泄漏,采取措施后复水器仍然泄漏。停机开缸检查发现,汽轮机两支末级叶片断裂,另有67支叶片发生了不同程度磨损、变形。末级隔板复环汽封全部损坏。为查明末级叶片断裂性质及其成因,对故障件进行了综合分析。该电厂2号机系300MW汽轮发电机组,其蒸发量为970t/h,入口蒸汽温度为535℃,蒸汽压力为17.35Mpa。该机组投产后工作一直断续运行,至一年半后出现故障,共启停64次,累计运行3315h。汽轮机末级叶片共94片,材质为2Cr11NiMoV耐热钢。叶片工作部分高度为844.55mm。进气侧叶刃自顶部向下嵌焊265mm×16mm×1.6mmStellite合金片,采用Inconel82焊丝将合金片边缘与叶片焊接。送检末级叶片断裂位置距顶端265mm。断落部分因受其他叶片碰撞、挤压已发生严重塑性变形及碰伤。所包嵌的Stellite合金片已全部剥落,只剩下两侧焊根。断裂表面虽未直接受损,但因刃部合金片掉落已使断口关键部位(裂纹起始部位)严重残缺。断裂叶片剩余部分基本完好,断裂表面未受碰损(图10-4)。图10-5示出了叶片断口的宏观形貌。可以看出,断裂表面明显分为两个区域,即光滑区和纤维区。光滑区在叶片进气侧。在光滑区内宏观疲劳条纹极为明显,宏观疲劳条纹为设备启动、停机或功率变化留下的痕迹。光滑区即疲劳裂纹扩展区,在疲劳裂纹扩展的后期,尚可见有由叶刃向排气侧扩展的放射状条纹。光滑区与纤维区之间弧形条纹实际上代表疲劳裂纹终止线。纤维区为终断区,即瞬时断裂区。根据宏观疲劳条纹及疲劳裂纹终止线的指向可以判断,疲劳裂纹起始于进气侧叶片刃部。从断口宏观形貌还可看到Stellite含金片的截面形状。由于叶片断裂恰好处于Stellite合金片下端与基体金属焊合部位,所以正如外观检查时看到的,断掉部分叶片刃部的Stellite合金片除两侧焊根外已全部剥落,而在剩余部分叶片断口上看到了与基体金属融合很好的堆焊层。能谱分析结果表明,该堆焊层所有部位均未发现单一组分的钴基Stellite合金片及Inconel镍基合金,而是Fe.Ni.Co.Cr含量都很高的基体、合金片及焊丝共同组分的融合物。采用扫描电镜观察了断裂表面不同部位的微观形貌。首先,在叶刃及其邻近区域发现有明显的焊接缺陷——焊缝凝固裂纹,即热裂纹。凝固裂纹分布在长3mm、宽2mm范围内。图10-6示出了裂源附近断口的放大及微观形貌。不难看出,断口表面具有典型的金属凝固的自由面形态特征。焊缝金属冷凝过程中,在液态与固态同时并存的温度区间,由于结晶偏析,沿树枝状晶间、胞状晶间或一次结晶的柱状晶晶界发生而形成的裂纹均属凝固裂纹。凝固裂纹断口的自由面特征形貌与形成温度密切相关。形成温度高时,除树枝状晶一次枝晶外,尚可见有二次枝晶凸起;形成温度低时,不但一次枝晶凸起不明显,而且逐渐接近平坦的沿

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论