![2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(附答案详解)_第1页](http://file4.renrendoc.com/view3/M03/2A/12/wKhkFmYF8r6ASK9yAAFd884ogKs852.jpg)
![2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(附答案详解)_第2页](http://file4.renrendoc.com/view3/M03/2A/12/wKhkFmYF8r6ASK9yAAFd884ogKs8522.jpg)
![2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(附答案详解)_第3页](http://file4.renrendoc.com/view3/M03/2A/12/wKhkFmYF8r6ASK9yAAFd884ogKs8523.jpg)
![2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(附答案详解)_第4页](http://file4.renrendoc.com/view3/M03/2A/12/wKhkFmYF8r6ASK9yAAFd884ogKs8524.jpg)
![2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(附答案详解)_第5页](http://file4.renrendoc.com/view3/M03/2A/12/wKhkFmYF8r6ASK9yAAFd884ogKs8525.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试
卷(五)
1.计算(-6)3结果正确的是()
A.-3bB.3bC.-b3D.b3
2.据国家电影局初步统计,2023年春节档(1月21日至1月27日)电影票房约为6758000000
元,数据6758000000用科学记数法表示为()
A.6.758x109B.6.758xIO10C.6758x106D.0.6758xIO10
3.某物体如图所示,它的主视图是()
A.
B.
C.
D.
4.已知a,b,c是实数,若a>匕,c<0,贝i]()
A.a+b>cB,a+c>bC.a>b+cD.2a>b+c
5.在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不
相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这
7名学生成绩的()
A.平均数B.众数C.中位数D.方差
6.如图,在△ABC中,以8C为直径的半圆分别与A8,AC交于点
D,E.若BC=6,乙4=60°,则虎的长为()
A.5
B.n
C.27r
D.37r
7.已知点(一3,%)、(一1,%)、(1,%)在下列某一函数图象上,且、3<%<为,那么这个函
数是()
A.y=3xB.y=3x2C,y=|D.y=-[
8.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛大
致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,
依据该条件,3大桶加3小桶共盛斛米.(注:斛是古代一种容量单位)()
A.IB.IC.1D.
4625
9.如图,在正方形48C。中,点E,尸分别在边D4,4B上,且DE=AF,作4G1EF于点
H,交8c于点G.若AB=6,EF-.AG=2:3,则BG的长为.()
C.2D.1
10.己知二次函数y=+2cx+c的图象经过点4(a,c),B(b,c),且满足0<a+b<2.当
-1WxW1时,该函数的最大值m和最小值n之间满足的关系式是()
A.n=—3m—4B.m=-3n—4C.n=m—m2D.m=n2+n
11.分解因式:%3-9x=.
12•计算含一亮的结果是——•
13.某学校从“立定跳远,抛掷实心球,100米短跑,足球”四个项目中抽取两项进行测试,
恰好抽到''立定跳远”和“100米短跑”的概率为.
14.公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=16t-4t2,
当遇到紧急情况刹车时,由于惯性的作用,汽车要滑行,〃才能停下.
15.如图,直线与。。相切于点M,ME=E尸且EF〃MN,则
coszE=.
16.如图,AZBC和△4DE都是等边三角形,点。在8c上,
OE交AC于点F,若。F=3,EF=6,则的长是
CD的长是.
BDC
17.(1)计算:<9+|-6|-32;
(2)化简:(2a-l)2+a(4-a).
18.为了推动阳光体育运动的广泛开展,学校准备购买一批运动鞋供学生借用,现随机抽取
了学生〃人,统计他们的鞋号并绘制了统计图①和图②,请根据相关信息,解答下列问题:
⑴求a和m的值;
(2)直接写出本次调查获取的样本数据的众数和中位数;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
19.如图所示,延长平行四边形ABCO一边BC至点凡连结A尸交CO于点E,若径=去
(1)若BC=2,求线段的长;
(2)若△?!£)£的面积为3,求平行四边形48CZ)的面积.
20.己知一次函数yi=%-«+2的图象与反比例函数为=§(k丰0)的图象相交.
(1)若丫2的图象经过点(人,也),求m的值.
(2)若乃的图象过点(A,1),且2a+k=8.
①求丫2的函数表达式;
②当X>0时,比较月,%的大小.
21.如图,矩形ABCQ中,BOAB,E是4。上一点,A48E沿BE折叠,点A恰好落在线
段CE的点尸处,连接
(1)求证:BC=CE;
(2)设=AB=mAD,求m与人满足的关系式.
22.设二次函数y=a/+4a%+4a+l(a为常数,且a<0).
(1)写出该函数的对称轴和顶点坐标;
(2)若该函数图象与直线y=1+9a有交点,求交点的横坐标;
(3)若该函数图象经过点下(%1,%)Q(.x2,y2)>设n4XiWn+l,当打之1时均有力之为,数
〃的取值范围.
23.如图,aABC内接于OO(NACB>90°),连接OA,OC,记NB4C=a,乙BCO=0,乙BAO=
Y-
(1)证明:a+£=90。;
(2)设OC与A3交于点。,。。半径为2,
①若S=y+45。,AD=2OD,求由线段3。,CD,弧BC围成的图形面积S;
②若a+2y=90。,设sina=k,用含%的代数式表示线段。。的长.
AA
CC
答案和解析
1.【答案】c
【解析】解:(-b)3=(-b)(-ft)(-Z?)=-b3,
故选:C.
根据乘方的定义进行计算即可.
本题考查哥的乘方与积的乘方,掌握乘方的定义是正确解答的前提.
2.【答案】A
【解析】解:6758000000X6.758X109.
故选:A.
根据科学记数法的表示方法求解即可.
本题主要考查科学记数法.科学记数法的表示形式为axIO"的形式,其中1<同<io,〃为整
数.解题关键是正确确定〃的值以及”的值.
3.【答案】A
【解析】解:某物体如图所示,它的主视图是:
故选:A.
根据主视图的定义和画法进行判断即可.
本题考查简单组合体的主视图,解题的关键是明确主视图就是从正面看物体所得到的图形.
4.【答案】C
【解析】解:A选项,无法确定。与c、〃与c的大小关系,A错;
B选项,因为c<0,所以a>a+c,又因为a>b,无法确定a+c>b正确,B错;
C选项,因为c<0,所以b>b+c,又因为a>b,所以a>b>b+c,C项正确;
。选项,由C选项可知a>b+c,若a<0,则2a<a,无法确定2a>b+c正确,Z)错.
故选:C.
题目条件中仅有a>b,c<0,但不确定a与c、6与c的大小关系,故A、B、。均无法确定;因
为c<0,所以b>b+c,又因为a>b,所以a>b+c,C项正确.
本题考查给定实数间的大小关系,判断各选项是否成立,解题的关键是实数加上一个小于0的数
后小于原来的实数,以此确定绝对正确的选项.
5.【答案】C
【解析】解:由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进
入前3名,故应知道中位数的多少.
故选:C.
由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分
析.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程
度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和
恰当的运用.
6.【答案】B
【解析】解:连接。。、0E,
■■AA=60",
•••ZB+Z.C=120°,
•••OB=OD,OE=OC,
•••Z.ODB=乙B,Z.OEC=Z.C,
•••乙BOD+=360°-120°X2=120°,
•••4DOE=60°,
J.励的长为:6售3=兀,
loU
故选:B.
连接。。、OE,根据三角形内角和定理、等腰三角形的性质求出ND0E=60°,再根据弧长公式计
算,得到答案.
本题考查的是弧长的计算,熟记弧长公式是解题的关键.
7.【答案】D
【解析】
【分析】
本题主要考查一次函数的性质,反比例函数的性质及二次函数的性质,掌握相关函数的性质是解
题关键,也可直接代入各个选项的函数解析中,再判断y的大小,根据所学知识可判断每个选项
中对应的函数的增减性,进而判断y3,y2之间的关系,再判断即可.
【解答】
解:A.y=3x,因为3>0,所以y随x的增大而增大,所以丫1<丫2<、3,不符合题意;
B.y=3X2>当x=l和x=-l时,y相等,即73=、2,故不符合题意;
C.y-|,当x<0时,y随x的增大而减小,x>0时,y随x的增大而减小,所以丫2<为<丫3,
不符合题意;
D.y=当%<0时,y随x的增大而增大,x>0时,y随x的增大而增大,所以丫3<丫1<丫2,
符合题意,
故选:D.
8.【答案】C
【解析】解:设一个大桶盛酒x斛,一个小桶盛酒y斛,
根据题意得:二;,即6x+6y=5.
2(3x+3y)=5,即3x+3y=|.
故答案为:C.
设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛”和“1个
大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组,两式相加可得6%+6y,
然后整体求出3x+3y即可.
此题考查二元一次方程组的应用,根据题意正确列出方程组并运用整体法求得代数式的值是解答
本题的关键.
9.【答案】B
【解析】解:•.•四边形ABC。是正方形,
:.AB=AD=6,Z-DAB=Z.ABG=90°,
・・・Z.EAH+/.GAB=90°,
-AG1EF,
・・・〃HE=90°,
・・・Z-EAH+Z.AEH=90°,
:.Z.AEF=Z.GAB,
・・・Rt△EAF^Rt△ABG(HL),
,,A,F——AE—EF,——2
'BG^AB~AG~3
vAB=6,
,AE_2
'T=3?
解得:4E=4,
:,AF=DE=AD-AE=2,
AFEF2
''BG=AG=3f
・•.BG=3,
故选:B.
根据有两个角相等的三角形相似可得RtAEZFsRtAZBG,因为ERAG=2:3,所以△EAF与
△48G的相似比为2:3,由相似三角形对应线段成比例,列比例式即可求解.
本题考查了相似三角形的判定与性质,以及正方形的性质,熟练掌握相似三角形的判定与性质是
解题的关键.
10.【答案】D
【解析】解:,:二次函数y=-/+2cx+c的图象与x轴交于4(a,c),B(b,c)两点,
图象开口向下,对称轴为直线“=竽=以
v0<a+b<2,
0<c<1,
二当-1<%<1时,函数的最大值是X=C时所对应的函数值,函数的最小值是X=-1时所对应的
函数值,
:'m=—c2+2c2+c=c2+c,n=—1—2c+c=—c—1,
m=n2+n
故选:D.
由二次函数y=—/+2cx+c的图象经过点4(a,c),B(b,c)两点,得出对称轴为直线x=竽,即
可得出对称轴在0<c<1之间,根据函数的最大值是x=c时所对应的函数值,函数的最小值是
%=一1时所对应的函数值,求解即可.
本题主要考查了抛物线的图象与性质,判断对称轴在0〜1之间、确定函数的最大值是%=c时所
对应的函数值,函数的最小值是x=-1时所对应的函数值是解题的关键.
11.【答案】x(x+3)(%-3)
【解析】解:原式=穴/一9)
=x(x+3)(x—3),
故答案为:%(%4-3)(%—3).
根据提取公因式、平方差公式,可分解因式.
本题考查了因式分解,利用了提公因式法与平方差公式进行分解,注意分解要彻底.
12.【答案】j
a-2
【解析】解:^2^4—^^2
4a2
(a+2)(a—2)a+2
4a2(a—2)
(a+2)(a—2)(a+2)(a—2)
4a—2(G—2)
=(Q+2)(Q-2)
4Q—2Q+4
(a+2)(a—2)
2(a+2)
(a+2)(a—2)
2
u—2
故答案为:—
a—2
根据分式混合运算法则化简即可得到答案.
本题考查了分式混合运算,掌握分式混合运算法则是解决问题的关键.
13.【答案】7
O
【解析】解:用1,2,3,4分别表示立定跳远,抛掷实心球,100米短跑,足球.
画树状图得:
•.•共有12种等可能的结果,恰好抽到“立定跳远”和“100米短跑”两项的有2种情况,
二恰好抽至U“立定跳远”和“100米短跑”的概率是:
1Zo
故答案为:
根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到“立定跳远”、“100米
短跑”两项的情况,再利用概率公式即可求得答案.
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适
合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验
还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
14.【答案】16
【解析】解:s=16t—4t2=—4(t—2)2+16,
v-4<0,
.•.当t=2时,s最大,
••・当t=2时,汽车停下来,滑行了16m.
故答案为:16.
由题意得,此题实际是求从开始刹车到停止所走的路程,即s的最大值.把抛物线解析式化成顶
点式后,即可解答.
本题考查二次函数的实际应用,关键是把函数解析式化为顶点式.
15.【答案】:
【解析】解:连接。〃,。”的反向延长线交E尸于点C,如图,
•••直线MN与。。相切于点M,
・・・0MJ.MN,
vEF//MN,
/.MC1EF,
:・CE=CF,
・・・ME=MF,
而ME=EF,
;・ME=EF=MF,
・••△MEF为等边三角形,
.-.ZE=60°,
1
:,cosZ.F=cos60°=•
故答案为:
连接OM,OM的反向延长线交EF于点C,由直线MN与。。相切于点M,根据切线的性质得OM1
MN,而EF〃MN,根据平行线的性质得到MCIEF,于是根据垂径定理有CE=CF,再利用等腰
三角形的判定得到ME=MF,易证得△ME尸为等边三角形,所以乙E=60。,然后根据特殊角的三
角函数值求解.
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判
定与性质和特殊角的三角函数值.
16.【答案】9浮
【解析】解:「△ABC和AAOE都是等边三角形,
・・.4。=AE=DE=OF+EF=3+6=9,/LABD=乙DCF=60°,
•・・Z.BAD+/.ABD=Z.ADC=^ADF+乙CDF,乙ABD=Z.ADF=60°,
・•・Z-BAD=(CDF,
・•・△ABDSADCF,
.AB_AD_BD
CD='DF=~CF"
AB9
.F=§=3o,
设=贝=BD=2%,
tAB_CD
‘丽=而'
3xx
2xCF
2o7
CF=|x,则AF=AC-CF=AB-CF=3x-=^x,
ABC^^40E都是等边三角形,
^ADF=Z.ACD,£.DAF=/.CAD,
・••△ADF^^ACD,
:.——AD=——AF,
ACAD
:•AF=——=-%,
x3
解得:x=3^(负值舍去),
・•・CD=
故答案为:9,殍,
根据△ABC和AAOE都是等边三角形,得出△ABDSADCF、LADF^LACD,设CD=X,得至lj
两个用x表示A尸的关系式,解方程即可.
此题主要考查了相似三角形的判定与性质、等边三角形的性质、三角形的外角的性质,解题的关
键是正确找出相似三角形.
17.【答案】解:(1)原式=3+6-9
=0;
(2)原式=4a2—4a+1+4a—a2
=3a2+1.
【解析】(1)先计算算术平方根、绝对值、乘方的运算,再合并即可;
(2)先根据完全平方公式、单项式乘多项式的法则计算,再合并即可.
此题考查的是完全平方公式、实数的运算、单项式乘多项式,掌握其运算法则是解决此题的关键.
18.【答案】解:⑴12+30%=40(人),即a=40,
6-40x100%=15%,即m=15,
答:a=40,m=15;
(2)抽取的这40名学生的鞋码出现次数最多的是35号,共有12人,因此众数是35号,
将这40名学生的鞋码从小到大排列,处在中间位置的两个数都是36号-,因此中位数是36号,
答:中位数是36号,众数是35号;
(3)200x25%=50(双),
答:学校计划购买200双运动鞋,建议购买36号运动鞋约为50双.
【解析】(1)从两个统计图可知,抽取鞋码是35号的学生有12人,占调查总数的30%,由频率=器
进行计算即可求出调查人数,进而求出鞋码是34号的学生所占的百分比,确定粗的值;
(2)根据中位数、总数的定义进行解答即可;
⑶用200乘以“样本中36号鞋子数量所占的百分比”即可.
本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是解决问题的前提,掌握
频率=等是正确解答的关键.
19.【答案】解:(1)・.,四边形A8CO为平行四边形,
:・AD"BF,AD=BCf
・••△FCE,
•A,D(—=DE—,
CFCE
-r-DE1
mCE~2,
CF=2AD=2BC,
而BC=2,
CF=6;
(2)如图,过E作MN14。于M,交C尸于N,
•:AD//BF,
EN1CF于N,
根据(1)EN=2EM,
•••△ADE的面积为3,
:,;XADxME=3,
:,ADxME=6,
二平行四边形ABCD的面积=ADxMN=ADX4EM=4x6=24.
【解析】(1)利用平行四边形的性质可以证明△ADESAFCE,然后利用相似三角形的性质和已知
条件即可求解;
(2)利用相似三角形的性质和三角形的面积公式可以求出ADxME,然后利用平行四边形的面积即
可求解.
此题主要考查了相似三角形的性质与判定,同时也利用了三角形的面积公式和平行四边形的性质
及面积公式,有一定的综合性,对于学生的要求比较高.
20.【答案】解:(1)・.・儿的图象经过点(心机),
k
m=7-=1.
k
(2)①yi的图象过点(幻1),且2a+k=8.
.(k-a+2=1
••12Q+/C=8'
.[a=3
,・tfc=2f
2
yz—~9
②由①可得yi=%-1,
(yi=x-1
•・,{2,
忆武:3舍去),
•••两个函数在一象限交点的横坐标是2.
为=》一1,%随X的增大而增大,丫2=:在第一象限,丫2随X的增大而减小,
•••当o<x<2时,y2>yi>
当%>2时,%>y2.
【解析】(1)直接将点(k,m)代入解析式算出机值;
(2)①将点(k,l)代入%,联立2a+k=8求出〃、",即可求出丫2的函数表达式.②求出交点坐标,
根据增减性进行分段分析.
本题考查一次函数与反比例函数的交点问题,熟练掌握一次函数和反比例函数的性质是突破本题
的关键.
21.【答案】(1)证明:由折叠的性质可知,^BEA=^BEF,
•:AD//BC,
:.Z.BEA=乙EBC,
:.Z.BEF=Z.EBC,
・・・BC=CE;
(2)解:・四边形ABC。是矩形,
:.AB=CD,AD=BC,
vAE—kAD,AB=mADf
..DE=AD-AE=AD(l-k^
在京△CEO中,CE2=CD2+DF2,
/.AD2=(mAD)2+[AD(1-/c)]2,
整理得,m2=2k-k2.
【解析】⑴根据折叠的性质得到4BE/=根据平行线的性质、等腰三角形的判定定理证
明;
(2)根据题意用4。表示出A3、AD,根据勾股定理列式计算即可.
本题考查的是矩形的性质、翻折变换的性质,掌握翻折变换的性质是解题的关键.
22.【答案】解:(l)y=ax2+4ax+4a+1=a(x+2)24-1,
・•・二次函数图象的对称轴是直线x=-2,顶点为(一2,1).
(2)・・•该二次函数图象与直线y=1+9a有交点,
・•・ax2+4ax+4Q+1=1+9a,化简得:%24-4%—5=0,
解得%i=—5,x2—1.
・•・交点的横坐标为:-5或1.
(3),・•抛物线开口向下,对称轴是直线X=-2,当%2>1时均有>丫2,
・•・%4-2|<|%2+2|,即%+2\<x2+2f
••%i+2<%2+或+2>-2-%2,
••%1<%2»或>-4-%2,
,・。231,
—4-%2——5,
,・•该二次函数图象上的两点、(%2,兆),
设九<<n4-1,当%2N1时,均有力>y2,
•••产T
ln+1<1
:.-5<n<0.
【解析】(1)根据二次函数的对称轴和顶点坐标公式计算即可.
(2)联立两个函数关系式,得到一个一元二次方程,该方程的解就是交点的横坐标.
(3)利用二次函数的对称性,首先根据%2及,可得与W小或2-4一尢2,再根据外21,可得
%!<-5,从而得到关于〃的不等式组,求解即可得出〃的取值范围.
本题主要考查了二次函数的图象与性质,二次函数图象上点的坐标特征,灵活应用二次函数的性
质是解题的关键.
23.【答案】(1)证明:连接。&如图,
vZ-BOC=2/-BAC,Z.BAC=a,
・•・乙BOC=2a.
v0C=OB,
:.Z-OCB=乙OBC=仇
・・・Z,BOC+Z-OCB4-Z,OBC=180°,
:.2a+2夕=180°.
・・・a+0=90°;
(2)解:①••/=y+45。,a+0=90°,
・•・90°-a=y+45°.
・•・a+y=45°.
•・,Z.BAC=a,Z-BAO=y,
・・・LOAC=ABAC+Z.BAO=45°.
vOA=OC,
・・・Z.OAC=LOCA=45°.
・・・Z.AOC=90°.
-AD=2。。,
OD1
・•・sinZ-OAD=丁尸=
AD2
:.WAD=30°.
ALBAC=15°.
・•・(BOC=2(BAC=30°.
•・•OA=OD,
・•・乙OBA=/.BAO=30°.
・・・乙DOB=乙DBO=30°,
.,•DO=DB.
过点。作。E_LOB于点E,如图,
c
则OE=EB=goB=*
DF
vtanzDOB=—,
UE
V-3DE
•■—=•
2
1O
SpoB=5xOB-DE=.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代服务业的全球化进程与未来趋势预测报告
- 我们的节日端午节包粽子活动方案
- 生态城市规划中的公园绿地建设
- 现代物流技术创新开启智能化时代
- 客户满意度调查的解决方案
- 2023六年级数学上册 四 圆的周长和面积 1圆的周长 圆的周长公式的拓展应用说课稿 冀教版
- 14-2《变形记》(节选)(说课稿)-2024-2025学年高一语文下学期同步教学说课稿专辑(统编版必修下册)
- 11 屹立在世界的东方 第1课时 说课稿-2023-2024学年道德与法治五年级下册统编版001
- 2023二年级数学上册 五 测量长度 1用厘米作单位量长度第3课时 用厘米、分米作单位量长度的练习说课稿 西师大版
- Unit 5 Whose dog is it(说课稿)-2023-2024学年人教PEP版英语五年级下册
- 部编版语文四年级下册第一单元 迷人的乡村风景 大单元整体教学设计
- 湖南省长郡中学2023-2024学年高二下学期寒假检测(开学考试)物理 含解析
- 五年级行程问题应用题100道
- 血透病人体重健康宣教
- 脾破裂护理查房
- 人教版高中物理必修一全套课件【精品】
- 动物检疫技术-临诊检疫技术(动物防疫与检疫技术)
- 《华夏幸福房地产公司人才流失现状、原因及应对策略》开题报告(文献综述)3400字
- 文化墙、墙体彩绘施工方案
- 小型混凝土搅拌机-毕业设计
- 初中化学校本课程
评论
0/150
提交评论