下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新型遥感业务化处理系统设计与实现——以环境遥感系统为例的综述报告AbstractWiththeincreasingdemandforremotesensingapplications,developingacommercialremotesensingprocessingsystemisacriticalissue.Thispaperproposesadesignandimplementationofanewcommercialremotesensingprocessingsystem,whichisbasedontheenvironmentalremotesensingsystem.Thesystemmainlyconsistsoffourmodules:datapreprocessing,imageprocessing,informationextraction,andresultvisualization.Thedatapreprocessingmodulemainlyincludesimageregistrationandnormalization.Theimageprocessingmodulemainlyinvolvesimageenhancement,segmentation,andclassification.Theinformationextractionmodulemainlyincludesfeatureextractionandinformationfusion.Finally,theresultsofeachmodulearevisualized.Experimentalresultsshowthatthesystemperformanceissatisfactory,andtheproposedapproachcanprovideapracticalsolutiontotheremotesensingapplications.Keywords:remotesensing,commercialremotesensingprocessingsystem,environmentalremotesensingsystem,datapreprocessing,imageprocessing,informationextraction,resultvisualizationIntroductionRemotesensingtechnologyisplayinganessentialroleinenvironmentalmonitoring,resourcemanagement,cropyieldestimation,land-usemapping,etc.ItprovidesustheopportunitytoobservetheEarth'ssurfaceatabroadspatialscale,despitetheinfluenceofatmosphericdisturbance.Therefore,remotesensinghasbecomemoreandmorepopularduetoitsuniqueadvantages.Inaddition,theremotesensingdatahasbecomemoreaccessibleandfrequentduetotherapidincreaseinremotesensingsatellites.Asaresult,thedevelopmentofpracticalremotesensingprocessingsystemshasbecomeanurgentissue.Remotesensingprocessingsystemsaredesignedtoprovidepracticalsolutionstotheremotesensingapplications.Theytypicallyincludeseveralmodules,includingdatapreprocessing,imageprocessing,informationextraction,andresultvisualization.Thispaperproposesanewcommercialremotesensingprocessingsystembasedontheenvironmentalremotesensingsystem.Thesystemmainlyconsistsoffourmodules:datapreprocessing,imageprocessing,informationextraction,andresultvisualization.Thesystemisprimarilydesignedtoprovidepracticalsolutionstoawiderangeofremotesensingapplications.SystemOverviewTheproposedsystemmainlyconsistsoffourmodules,includingdatapreprocessing,imageprocessing,informationextraction,andresultvisualization.Eachmoduleisbrieflyintroducedbelow.DatapreprocessingThedatapreprocessingmoduleisresponsibleforpreparingtheremotesensingdataforfurtherprocessing.Itmainlyincludesimageregistrationandnormalization.Imageregistrationreferstotheprocessofaligningtheremotesensingdatawiththesamegeographiccoordinatesystem,whileimagenormalizationreferstotheprocessofadjustingthebrightnessandcontrastoftheremotesensingdatatofacilitatethesubsequentprocessing.ImageprocessingTheimageprocessingmoduleisresponsibleforenhancingtheimagequality,segmentingtheimage,andclassifyingtheimage.Theobjectiveofimageenhancementistoimprovethevisualqualityoftheimagetofacilitatethesubsequentprocessing.Imagesegmentationistheprocessofdividingtheimageintodifferentregionsorobjectsbasedonthepredeterminedcriteria.Imageclassificationreferstotheprocessofassigningalabelorclasstoeachregionorobjectintheimage.InformationextractionTheinformationextractionmoduleisresponsibleforextractingtheusefulinformationfromtheimage.Itmainlyincludesfeatureextractionandinformationfusion.Featureextractionreferstotheprocessofidentifyingthekeyfeaturesoftheimage,suchascolor,texture,shape,etc.Informationfusionreferstotheprocessofintegratingtheinformationfromdifferentsourcesordifferentfeaturestoobtainmoreaccurateinformation.ResultvisualizationTheresultvisualizationmoduleisresponsiblefordisplayingtheresultsofeachmodule.Thepurposeofresultvisualizationistoprovideanintuitiveunderstandingoftheremotesensingdataprocessingtousers.ExperimentalResultsTheproposedsystemwasappliedtotheenvironmentalremotesensingsystem.TheremotesensingdatawasacquiredbytheLandsat8satellite.Theproposedsystemachievedsatisfactoryperformance,andtheexperimentalresultsaresummarizedbelow.DatapreprocessingTheimageregistrationandnormalizationwereperformedsuccessfully.AsshowninFigure1,theoriginalLandsat8imageandtheregisteredandnormalizedimageweredisplayedsidebyside.Thebrightnessandcontrastoftheimagewereadjusted,andtheoverallqualityoftheimagewasimproved.ImageprocessingTheimageprocessingmodulesuccessfullyenhancedtheimagequality,segmentedtheimage,andclassifiedtheimage.AsshowninFigure2,theoriginalLandsat8imageandtheprocessedimageweredisplayedsidebyside.Theimagewassegmentedintothreeregions,includingwater,vegetation,andbuilt-uparea.Theclassificationaccuracywasevaluated,andtheoverallaccuracywasover90%.InformationextractionTheinformationextractionmodulesuccessfullyextractedthefeaturesandfusedtheinformation.AsshowninFigure3,theimagewasfusedbytheprincipalcomponentanalysis(PCA),andthefeatureswereextractedbythegray-levelco-occurrencematrix(GLCM).Theresultsweredisplayedbythefalsecolorcomposite(FCC).ResultvisualizationTheresultvisualizationmodulesuccessfullydisplayedtheresultsofeachmodule.AsshowninFigure4,theresultsofthedatapreprocessing,imageprocessing,andinformationextr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第45届世界技能大赛平面设计技术项目全国选拔赛技术工作思路
- 名师讲解:2024年白公鹅养殖业政策解读与影响
- 《商业总体市场分析》课件
- 2024年美食文化:《杠杆》课件
- 2024年《社戏》课件制作的基本要求与标准
- 诗意教学新篇章:《示儿》公开课教案探讨
- 2024房地产经纪人培训计划:形象礼仪篇
- Excel2024版高级数据可视化技巧
- 创新思维下的2024年《画漫画》教案设计
- 2023年辽宁省大连市大学英语6级大学英语六级模拟考试(含答案)
- 事业单位招聘人员体检表
- 对口计算机高职单招VB编程练习题及答案
- 量子力学选择题库(含答案)
- 少儿绘画之《跳跃的海豚》
- 《乡土中国》整本书阅读 高中语文 必修上册
- Arduino编程控制技术考试复习题库500题(含答案)
- 2022年反洗钱考试题库及答案
- 650采煤机故障分析报告
- 《《凡尔赛条约》和《九国公约》》PPT课件2
- 煤矿重大隐患判定标准解读专业分类
- 完整版中国工商银行信贷工作手册
评论
0/150
提交评论