分层随机抽样概论_第1页
分层随机抽样概论_第2页
分层随机抽样概论_第3页
分层随机抽样概论_第4页
分层随机抽样概论_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎大家的到来

分层随机抽样概论*2第一节引言一、定义在抽样之前,先将总体N个单元划分成L个互不重复的子总体,每个子总体称为层,它们的大小分别为,这个层合起来就是整个总体,然后,在每个层中分别独立地进行抽样,这种抽样就是分层抽样,所得到的样本称为分层样本。如果每层都是独立按照简单随机抽样进行,则称为分层随机抽样

不重不漏*3作用分层抽样的抽样效率较高,也就是说分层抽样的估计精度较高。这是因为分层抽样估计量的方差只和层内方差有关,和层间方差无关。分层抽样不仅能对总体指标进行推算,而且能对各层指标进行推算。层内抽样方法可以不同,而且便于抽样工作的组织。*4二、分层原则:

总体中的每一个单元一定属于并且只属于某一个层,而不可能同时属于两个层或不属于任何一个层。1.估计:层内单元具有相同性质,通常按调查对象的不同类型进行划分。2.精度:尽可能使层内单元的指标值相近,层间单元的差异尽可能大,从而达到提高抽样估计精度的目的。3.估计和精度:既按类型、又按层内单元指标值相近的原则进行多重分层,同时达到实现估计类值以及提高估计精度的目的。4.实施:抽样组织实施的方便,通常按行政管理机构设置进行分层。*5例题例如,对全国范围汽车运输的抽样调查,调查目的不仅要推算全国货运汽车完成的运量,还要推算不同经济成分(国有、集体、个体)汽车完成的运量。为组织的方便,首先将货运汽车总体按省分层,由各省运输管理部门负责省内的调查工作。各省再将省内拥有的汽车按经济成分分层。为提高抽样效率,再对汽车按吨位分层。例如,某高校对学生在宿舍使用电脑的情况进行调查,根据经验,本科生和研究生拥有电脑的状况差异较大。因此,在抽样前对学生按本科生和研究生进行分层是有必要的。*6三、符号说明(关于第h层的记号)层号

单元总数样本单元数第个单元的值层权抽样比总体均值样本均值总体方差样本方差*7第二节估计量一、对总体均值的估计分层样本,总体均值

的估计分层随机样本,总体均值

的简单估计

*8估计量的性质

性质1:对于一般的分层抽样,如果是的无偏估计(),则是的无偏估计。的方差为:只要对各层估计无偏,则总体估计也无偏。各层可以采用不同的抽样方法,只要相应的估计量是无偏的,则对总体的推算也是无偏的。*9证明性质1

由于对每一层有

因此,

估计量的方差

由于各层是独立抽取的,因此上式第二项中的协方差全为0,从而有

*10

性质2:对于分层随机抽样,是的无偏估计,的方差为:

*11证明性质2:

对于分层随机抽样,各层独立进行简单随机抽样,对每一层有

因此,由性质1,有

由第二章性质2,得

因此

*12

性质3:对于分层随机抽样,的一个无偏估计为:

*13证明性质3:

对于分层随机抽样,各层独立进行简单随机抽样,由第二章性质3,得的无偏估计为:

因此,的一个无偏估计为:

*14二、对总体总量的估计

总体总量

的估计为:

如果得到的是分层随机样本,则总体总量的简单估计为:

*152.估计量的性质性质4:对于一般的分层抽样,如果是的无偏估计,则是的无偏估计。的方差为:*16性质5:对于分层随机抽样,的方差为:*17性质6:对于分层随机抽样,的一个无偏估计为:

*18例3.1

调查某地区的居民奶制品年消费支出,以居民户为抽样单元,根据经济及收入水平将居民户划分为4层,每层按简单随机抽样抽取10户,调查获得如下数据(单位:元),要估计该地区居民奶制品年消费总支出及估计的标准差。层居民户总数样本户奶制品年消费支出1234567891012001040011015104080900240050130608010055160851601703750180260110014060200180300220415005035150203025103025*19*20*21三、对总体比例的估计

总体比例P的估计为:

估计量的性质

性质7:对于一般的分层抽样,如果是的无偏估计(),则是的无偏估计。的方差为:*22性质8:对于分层随机抽样,是的无偏估计,因而的方差为:

*23

性质9:对于分层随机抽样,的一个无偏估计为:*24例3.2

在例3.1的调查中,同时调查了居民户拥有家庭电脑的情况,获得如下数据(单位:台),要估计该地区居民拥有家庭电脑的比例及估计的标准差。层居民户总数样本户拥有家庭电脑情况12345678910120000010001002400010000001037501100001010415001000000000*25解:由上表可得,

根据前面对各层层权及抽样比的计算结果,可得各层估计量的方差:

因此,该地区居民拥有家庭电脑比例的估计为:

估计量的方差为:

估计量的标准差为:

*26第三节样本量在各层的分配

确定样本量:总的样本量,各层样本量估计量的方差不仅与各层的方差有关,还和各层所分配的样本量有关。实际工作中有不同的分配方法,可以按各层单元数占总体单元数的比例分配,也可以采用使估计量总方差达到最小、费用最小。

*27【例3.1】调查某地区的居民奶制品年消费支出,以居民户为抽样单元,根据经济及收入水平将居民户划分为4层,每层按简单随机抽样抽取10户,调查获得如下数据(单位:元),要估计该地区居民奶制品年消费总支出及估计的标准差。*28层居民户总数

权数

方差常数分配与权数成比例

与正比

12000.07

103

3

24000.14

46.5106

7

37500.26

90.61011

23

415000.53

13.91020

7

40.3*29层居民户总数

权数

标准差常数分配与权数成比例与方差成比例与正比

120000.2

20100604940

230000.3

301009011090

350000.5

34100150141170

估计方差

3.863.093.113

*30一、比例分配

按各层单元数占总体单元数的比例,也就是按各层的层权进行分配.对于分层随机抽样,这时总体均值的估计是自加权*31总体中的任一个单元,不管它在哪一个层,都以同样的概率入样,因此按比例分配的分层随机样本,估计量的形式特别简单。这种样本也称为自加权的样本。总体比例的估计是

*32二、最优分配

(一)最优分配在分层随机抽样中,如何将样本量分配到各层,使得总费用给定的条件下,估计量的方差达到最小,或给定估计量方差的条件下,使总费用最小,能满足这个条件的样本量分配就是最优分配。*33对所有层成立时,达到极小

常数*34简单线性费用函数,总费用由此得出下面的行为准则,如果某一层·单元数较多·内部差异较大·费用比较省则对这一层的样本量要多分配一些。*35(二)Neyman(内曼)分配如果每层抽样的费用相同,最优分配可简化为这种分配称为Neyman分配。这时,达到最小。

*36*37例3.3

(续例3.1),如果样本量仍为40,则按比例分配和Neyman分配时,各层的样本量应为多少?按比例分配时,各层的样本量为:

*38对于Neyman分配,

*39某些层要求大于100%抽样时的修正

按最优分配时,有时抽样比f较大,某个层的又比较大,则可能出现按最优分配计算的这个层的样本量超过的情况。实际工作中,如果第k层出现这种情况,最优分配是对这个层进行100%的抽样,即取,然后,将剩下的样本量按最优分配分到各层。

*40第四节样本量的确定

令当方差给定时

*41当按比例分配时,

实际工作中,n的计算可以分为两步,先计算:然后进行修正:

*42当按Neyman分配时,

*43例3.4

(续例3.1),如果要求在95%置信度下,相对误差不超过10%,则按比例分配和Neyman分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论