浙江省丽水市盘溪中学高二数学理模拟试卷含解析_第1页
浙江省丽水市盘溪中学高二数学理模拟试卷含解析_第2页
浙江省丽水市盘溪中学高二数学理模拟试卷含解析_第3页
浙江省丽水市盘溪中学高二数学理模拟试卷含解析_第4页
浙江省丽水市盘溪中学高二数学理模拟试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省丽水市盘溪中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,△ABC的面积夹角的取值范围是A. B. C. D.参考答案:B略2.为了在运行下面的程序之后得到输出y=16,键盘输入x应该是(

)A.或

B.

C.或

D.或参考答案:C

3.已知直线l的方程为(m2-2m-3)x+(2m2+m-1)y=m+5(m∈R),其倾斜角为,则实数m的值为()A. B.-1 C.

D.或-1参考答案:A4.已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于()A.1 B. C.2 D.3参考答案:C【考点】等差数列的前n项和.【分析】设出等差数列的首项和公差,由a3=6,S3=12,联立可求公差d.【解答】解:设等差数列{an}的首项为a1,公差为d,由a3=6,S3=12,得:解得:a1=2,d=2.故选C.5.将个不同的小球放入个盒子中,则不同放法种数有(

)A.

B.

C.

D.

参考答案:B

解析:每个小球都有种可能的放法,即6.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是()A.(-3,0)∪(3,+∞)

B.(-3,0)∪(0,3)

C.(-∞,-3)∪(3,+∞)

D.(-∞,-3)∪(0,3)参考答案:D7.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n=()A.8 B.9 C.10 D.11参考答案:C【考点】二项式定理的应用.【分析】本题的项的系数和二项式系数相等,根据二项展开式中中间项的二项式系数最大求出n的值.【解答】解:∵只有x5的系数最大,又∵展开式中中间项的二项式系数最大x5是展开式的第6项,∴第6项为中间项,∴展开式共有11项,故n=10故选项为C8.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:①三角形;②矩形;③正方形;④正六边形.其中正确的结论有A.①②③

B.②③④

C.①②④

D.①③④参考答案:B9.随机变量X的分布列如下表:则X的数学期望是()X123P0.30.5m

A、1.9B、1.8C、1.7D、随m的变化而变化参考答案:A10.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=()A.2 B.3 C.4 D.5参考答案:D【考点】6D:利用导数研究函数的极值.【分析】先对函数进行求导,根据函数f(x)在x=﹣3时取得极值,可以得到f′(﹣3)=0,代入求a值.【解答】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=﹣3时取得极值∴f′(﹣3)=0?a=5,验证知,符合题意故选:D.【点评】本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.二、填空题:本大题共7小题,每小题4分,共28分11.点是曲线上任意一点,则点到直线的最小距离为.参考答案:12.要使sinx-cosx=有意义,则m的取值范围是

参考答案:[-1,]13.“”是“”的

条件.参考答案:充分不必要略14.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是

.参考答案:4n+2

15.已知是两条异面直线,,那么与的位置关系____________________。

参考答案:异面或相交

解析:就是不可能平行16.若,其导数满足,则的值为______.参考答案:【分析】求出后可得关于的方程,可从该方程解出即可.【详解】,则,故,填.【点睛】本题考查导数的计算,属于基础题.17.过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为.参考答案:2【考点】直线与圆的位置关系.【分析】由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2.故答案为:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某考生参加一种测试,需回答三个问题,规定:每题回答正确得100分,回答不正确得-100分。已知该考生每题回答正确的概率都是0.8,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布列和数学期望;(2)求这名同学总得分不低于100分的概率.参考答案:解:(1)由题知,总得分X的概率分布列为:X-300-100100300P∴

EX=

=180

P(X≥100)=P(X=100)+P(X=300)

=

=0.896

略19.如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围。参考答案:解:(1)由题设点,又也在直线上,,由题,过A点切线方程可设为,即,则,解得:,又当斜率不存在时,也与圆相切,∴所求切线为或,即或(2)设点,,,,,,即,又点在圆上,,点为与的交点,若存在这样的点,则与有交点,即圆心之间的距离满足:,即,解得:略20.已知函数.(Ⅰ)若曲线在点处的切线经过点,求的值;(Ⅱ)若在(1,2)上存在极值点,求的取值范围.参考答案:(Ⅰ)∵,……1分∴,∵,……2分∴曲线y=f(x)在点(1,f(1))处的切线方程为,…4分代入得a+5=﹣2a﹣1?a=﹣2.……………6分(Ⅱ)∵为(0,+∞)上的减函数,…………8分又因为f(x)在(1,2)上存在极值,即=0有解∴.………………12分21.在中,已知,,,求边的长及.参考答案:解:由余弦定理得

∴,∴.略22.在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.(Ⅰ)求证:AB⊥平面PBC;(Ⅱ)求平面PAD和平面BCP所成二面角(小于90°)的大小;(Ⅲ)在棱PB上是否存在点M使得CM∥平面PAD?若存在,求的值;若不存在,请说明理由.参考答案:【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)证明AB⊥平面PBC,利用面面垂直的性质,根据AB⊥BC,平面PBC⊥平面ABCD,即可得证;(Ⅱ)取BC的中点O,连接PO,证明PO⊥平面ABCD,以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在的直线为z轴建立空间直角坐标系O﹣xyz,求出平面PAD的法向量,平面BCP的一个法向量,利用向量的夹角公式,即可求得平面ADP和平面BCP所成的二面角;(Ⅲ)在棱PB上存在点M使得CM∥平面PAD,此时,证明平面MNC∥平面PAD,可得∥平面PAD.【解答】(Ⅰ)证明:因为∠ABC=90°,所以AB⊥BC.…因为平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB?平面ABCD,所以AB⊥平面PBC;…(Ⅱ)解:取BC的中点O,连接PO.因为PB=PC,所以PO⊥BC.因为平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PO?平面PBC,所以PO⊥平面ABCD.…如图,以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在的直线为z轴建立空间直角坐标系O﹣xyz.不妨设BC=2.由直角梯形ABCD中AB=PB=PC=BC=2CD可得P(0,0,),D(﹣1,1,0),A(1,2,0).所以.设平面PAD的法向量.因为,所以令x=1,则y=﹣2,z=﹣.所以.…取平面BCP的一个法向量,所以cos=﹣.所以平面ADP和平面BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论