江西省上饶市广丰实验学校2022-2023学年高二数学理月考试题含解析_第1页
江西省上饶市广丰实验学校2022-2023学年高二数学理月考试题含解析_第2页
江西省上饶市广丰实验学校2022-2023学年高二数学理月考试题含解析_第3页
江西省上饶市广丰实验学校2022-2023学年高二数学理月考试题含解析_第4页
江西省上饶市广丰实验学校2022-2023学年高二数学理月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市广丰实验学校2022-2023学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线在点P(1,12)处的切线与y轴交点的纵坐标是(

A.-9

B.-3

C.9

D.15参考答案:C略2.设A为圆上的动点,PA是圆的切线,且则P点的轨迹方程为(

)A.

B.C.

D.参考答案:B3.已知数列中,若则等于

)A.3

B.4

C.5

D.6参考答案:A略4.“a>0”是“|a|>0”的

A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:A5.(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60参考答案: C【考点】DC:二项式定理的应用.【分析】利用展开式的通项,即可得出结论.【解答】解:(x2+x+y)5的展开式的通项为Tr+1=,令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.6.(5分)某学校有教职员工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样抽取30人,则样本中各职称人数分别为() A. 5,10,15 B. 3,9,18 C. 3,10,17 D. 5,9,16参考答案:B考点: 分层抽样方法.专题: 概率与统计.分析: 求出样本容量与总容量的比,然后用各层的人数乘以得到的比值即可得到各层应抽的人数.解答: 解:由=,所以,高级职称人数为15×=3(人);中级职称人数为45×=9(人);一般职员人数为90×=18(人).所以高级职称人数、中级职称人数及一般职员人数依次为3,9,18.故选B.点评: 本题考查了分层抽样,在分层抽样过程中,每个个体被抽取的可能性是相等的,此题是基础题.7.已知z(2+i)=1+ai,a∈R,i为虚数单位,若z为纯虚数,则a=()A.﹣2 B.﹣ C. D.2参考答案:A【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算性质、纯虚数的定义即可得出.【解答】解:z(2+i)=1+ai,∴z(2+i)(2﹣i)=(1+ai)(2﹣i),∴z=,若z为纯虚数,则=0,≠0,a=﹣2.故选:A.【点评】本题考查了纯虚数的定义、复数的运算性质,考查了推理能力与计算能力,属于基础题.8.过抛物线的焦点F作倾斜角为的直线交抛物线于A,B两点,若,则实数p的值为(

)A. B.1 C. D.参考答案:B【分析】设直线方程为,,联立直线与抛物线可得,可得答案.【详解】解:易得,设直线方程为,(此题中),,可得,,可得,,可得,由题意的,故P=1,故选B.【点睛】本题是一道关于抛物线的题目,关键是掌握抛物线的简单性质及弦长的计算方法.9.直线与圆相交于两点,则弦的长度等于(

)A.

B.

C.

D.1参考答案:B

略10.已知△ABC,若对任意,,则△ABC一定为A.锐角三角形

B.钝角三角形

C.直角三角形

D.答案不确定参考答案:C解析:令,过A作于D。由,推出,令,代入上式,得,即

,也即。从而有。由此可得。

二、填空题:本大题共7小题,每小题4分,共28分11.如图所示,已知点P是正方体ABCD﹣A1B1C1D1的棱A1D1上的一个动点,设异面直线AB与CP所成的角为α,则cosα的最小值是_________.参考答案:略12.已知函数若,a,b,c,d是互不相同的正数,且,则abcd的取值范围是_____.参考答案:(24,25)【分析】画出函数的图象,运用对数函数的图象,结合对数运算性质,可得,由二次函数的性质可得,运用基本不等式和二次函数的性质,即可得到所求范围.【详解】先画出函数的图象,如图所示:因为互不相同,不妨设,且,而,即有,可得,则,由,且,可得,且,当时,,此时,但此时b,c相等,故的范围为.故答案为:.【点睛】本题考查了利用函数图象分析解决问题的能力,以及对数函数图象的特点,注意体会数形结合思想在本题中的运用.13.已知数列{an}是等差数列,{bn}是等比数列,若a1=2且数列{anbn}的前n项和是(2n+1)?3n﹣1,则数列{an}的通项公式是.参考答案:an=n+1【考点】数列的求和.【分析】根据当n=1时,求得b1=4,写出Tn=(2n+1)?3n﹣1,Tn﹣1=(2n﹣1)?3n﹣1﹣1,两式相减求得:anbn=4(n+1)?3n﹣1,得到bn=4?3n﹣1,an=n+1.【解答】解:{anbn}的前n项和Tn=(2n+1)?3n﹣1,{bn}是等比数列,公比为q,数列{an}是等差数列,首项a1=2,公差为d,a1=2,a1b1=3?3﹣1,b1=4,∵a1b1+a2b2+a3b3+…+anbn=(2n+1)?3n﹣1,a1b1+a2b2+a3b3+…+an﹣1bn﹣1=(2n﹣1)?3n﹣1﹣1,两式相减得:anbn=4(n+1)?3n﹣1,∴bn=4?3n﹣1,an=n+1,故答案为:an=n+1.14.若方程表示圆,则实数的取值范围是_________.参考答案:15.设直线l1:(a+1)x+3y+2﹣a=0,直线l2:2x+(a+2)y﹣7=0,若l1⊥l2,则实数a的值为

;若l1∥l2,则实数a的值为

.参考答案:﹣,1.【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】利用两条直线相互垂直、平行与斜率的关系即可得出.【解答】解:当a=﹣2或﹣1时,两条直线l1,l2不垂直,舍去.当a≠﹣2或﹣1时,∵l1⊥l2,∴×=﹣1.解得a=﹣.∵l1∥l2,∴,解得a=1.故答案分别为:﹣,1.【点评】本题考查了两条直线相互垂直、平行与斜率的关系,属于基础题.16.已知不等式的解集为,则

参考答案:.略17.设抛物线的焦点为F,准线为,P为抛物线上一点,PA,A为垂足,如果直线AF的斜率为,那么IPFI等于________.参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数的定义域是,函数在上的值域为,全集为,且求实数的取值范围。参考答案:19.19.(本小题满分12分)某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关成功的总人数为X,求X的分布列和期望.参考答案:(1)(2)X可取0,1,2,3,4

,,

,,

X的分布列为:X01234P∴20.已知等比数列{an}的各项均为正数,且满足2a1+a2=8,a2a6=4.(1)求数列{an}的通项公式;(2)设bn=log2a1+log2a2+log2a3+…+log2an,求数列{}的前n项和Sn.参考答案:考点:数列的求和.专题:等差数列与等比数列.分析:(1)设等比数列{an}的公比q>0,由于2a1+a2=8,a2a6=4.可得,解得即可得出.(2)利用指数运算与对数运算法则可得:bn=log2a1+log2a2+log2a3+…+log2an=.于是.利用“裂项求和”即可得出数列{}的前n项和Sn.解答:解:(1)设等比数列{an}的公比q>0,∵2a1+a2=8,a2a6=4.∴,解得,∴.(2)bn=log2a1+log2a2+log2a3+…+log2an===.∴.∴数列{}的前n项和Sn=2==.点评:本题考查了等比数列的通项公式、指数运算与对数运算法则、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.21.直线如图,四边形ABCD为矩形,PD⊥平面ABCD,PD=DC=2,BC=,E是PC的中点.(Ⅰ)证明:PA∥平面EDB;(Ⅱ)求异面直线AD与BE所成角的大小.参考答案:(Ⅰ)证明:PA∥平面EDB;(Ⅱ)求异面直线AD与BE所成角的大小.证明:(Ⅰ)连接AC,设AC∩BD=O,连接EO,∵四边形ABCD为矩形,∴O为AC的中点.∴OE为△PAC的中位线.

∴PA∥OE,而OE平面EDB,PA平面EBD,∴PA∥平面EDB.

……………4分(Ⅱ)方法一:∵AD∥BC,∴就是异面直线AD与BE所成的角或补角.………6分

∵PD⊥平面ABCD,BC平面ABCD,∴BC⊥PD.又四边形ABCD为矩形,∴BC⊥DC.又因为PDDC=D,所以BC⊥平面PDC.

在BCE中,BC=,EC=,∴.

即异面直线AD与BE所成角大小为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论