版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市白马桥乡联校2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,,是实数,则下列结论中一定正确的是()A.若,则
B.若,则C.若,则
D.若,则参考答案:D2.已知双曲线的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为(
)A.-2
B.
C.1
D.0参考答案:A略3.下列表述正确的是(
)①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。A.①②③ B.②③④ C.①③⑤ D.②④⑤;参考答案:C【分析】利用归纳推理就是从个别性知识推出一般性结论的推理,从而可对①②进行判断;由类比推理是由特殊到特殊的推理,从而可对④⑤进行判断;对于③直接据演绎推理即得.【详解】所谓归纳推理,就是从个别性知识推出一般性结论的推理.故①对②错;又所谓演绎推理是由一般到特殊的推理.故③对;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.故④错⑤对.故选:C.【点睛】本题主要考查推理的含义与作用.所谓归纳推理,就是从个别性知识推出一般性结论的推理.演绎推理可以从一般到特殊;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.4.6名同学安排到3个社区A,B,C参加志愿者服务,每个社区安排两名同学,其中甲同学必须到A社区,乙和丙同学均不能到C社区,则不同的安排方法种数为()A.12 B.9 C.6 D.5参考答案:B【考点】D3:计数原理的应用.【分析】本题可以分为两类进行研究,一类是乙和丙之一在A社区,另一在B社区,二类是乙和丙在B社区,计算出每一类的数据,然后求其和即可【解答】解:由题意将问题分为两类求解第一类,若乙与丙之一在甲社区,则安排种数为A21×A31=6种第二类,若乙与丙在B社区,则A社区沿缺少一人,从剩下三人中选一人,另两人去C社区,故安排方法种数为A31=3种故不同的安排种数是6+3=9种故选B5.在△ABC中,角A,B,C所对的边长分别为a,b,c.若C=120°,c=a,则()A.a>b
B.a<b
C.a=b
D.a与b的大小关系不能确定参考答案:A6.直线的倾斜角为(
)A.
B.
C.
D.参考答案:D7.已知抛物线y2=ax(a≠0)的准线经过点(1,﹣1),则该抛物线焦点坐标为()A.(﹣1,0) B.(1,0) C.(0,﹣1) D.(0,1)参考答案:A【考点】K8:抛物线的简单性质.【分析】根据题意,由抛物线的方程可以求出其准线方程,则有﹣=1,解可得a的值,即可得抛物线的方程,结合抛物线的焦点坐标计算可得答案.【解答】解:根据题意,抛物线的方程为y2=ax,其焦点在x轴上,则其准线方程为:x=﹣,若其准线经过点(1,﹣1),则其准线方程为x=1,即有﹣=1则a=﹣4,抛物线的方程为y2=﹣4x,则该抛物线焦点坐标为(﹣1,0);故选:A.8.若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是(
)A.
B.
C.
D.参考答案:D9.设复数满足,则 A. B. C. D.参考答案:10.某班有50人,从中选10人均分2组(即每组5人),一组打扫教室,一组打扫操场,那么不同的选派法有(
)A. B. C. D.参考答案:A【分析】根据先分组,后分配的原则得到结果.【详解】由题意,先分组,可得,再一组打扫教室,一组打扫操场,可得不同的选派法有.故选:A.【点睛】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.二、填空题:本大题共7小题,每小题4分,共28分11.在直角坐标系中,直线x+y﹣3=0的倾斜角是.参考答案:150°【考点】直线的一般式方程;直线的倾斜角.
【专题】直线与圆.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为,设倾斜角为α,则tanα=,α∈[0,180°),所以α=150°;故答案为:150°.【点评】本题考查了由已知直线方程求直线的斜率;属于基础题.12.三棱柱的底面是边长为的正三角形,侧面是长方形,侧棱长为,一个小虫从点出发沿表面一圈到达点,则小虫所行的最短路程为_______.参考答案:5略13.若,则=
参考答案:14.已知函数的图象恒过定点,若点与点B、C在同一直线上,则的值为
参考答案:1略15.设复平面上关于实轴对称的两点Z1,Z2所对应的复数为z1,z2,若z1-(3z2-1)i=[z2+(2+z1)i]i,则z1z2=
.参考答案:16.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.参考答案:0.98.【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.17..曲线在点(0,1)处的切线方程为
.参考答案:试题分析:,,切线斜率为,切线方程为,即.故答案为.考点:利用导数求切线方程.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)讨论函数的单调性;(2)当时,证明:.参考答案:(1)答案不唯一,具体见解析(2)见解析【分析】(1)利用导数求函数单调区间的套路,确定定义域,求导,解含参的不等式;(2)由(1)赋值放缩可以得到一函数不等式,再赋值将函数不等式转化为数列不等式,采用累加法即可证明不等式。【详解】(1)解:因为,①当时,总有,所以在上单调递减.,无增区间;②当时,令,解得.故时,,所以在上单调递增.,同理时,有,所以在上单调递减.(2)由(1)知当时,,若,则,此时,,因为,所以,当时,取,有,所以故.【点睛】本题主要考查了导数在函数中的应用,利用导数求函数的单调区间,涉及到含参不等式的讨论,以及利用放缩法证明数列不等式,意在考查学生逻辑推理和数学运算能力。19.已知函数.(1)若,求曲线在点处的切线方程;(2)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.参考答案:(1)(),.….2分即有曲线在点处的切线斜率为,.….3分则曲线在点处的切线方程为,即为..…5分(2)令,即有,即在上有实数解..….7分令,,当时,,递减,当时,,递增,.…10分即有取得极小值,也为最小值,且为,.….11分即有,则的取值范围是..….12分20.(10分)已知等差数列满足:.(1)求的通项公式;(2)若,求数列的前n项和.参考答案:21.数列{an}满足,,.(1)设,证明{bn}是等差数列;(2)求{an}的通项公式.参考答案:(1)证明见解析;(2).试题分析:(1)由an+2=2an+1-an+2,得an+2-an+1=an+1-an+2,即可证得;(2)由(1)得bn=1+2(n-1)=2n-1,即an+1-an=2n-1,进而利用累加求通项公式即可.试题解析:(1)证明由an+2=2an+1-an+2,得an+2-an+1=an+1-an+2,即bn+1=bn+2.又b1=a2-a1=1,所以{bn}是首项为1,公差为2的等差数列.(2)解由(1)得bn=1+2(n-1)=2n-1,即an+1-an=2n-1.于是(ak+1-ak)=(2k-1),所以an+1-a1=n2,即an+1=n2+a1.又a1=1,所以an=n2-2n+2,经检验,此式对n=1亦成立,所以,{an}的通项公式为an=n2-2n+2.点睛:本题主要考查等比数列的定义以及已知数列的递推公式求通项.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《焊接工程综合实验》实验教学大纲
- 玉溪师范学院《体育科学研究方法》2022-2023学年第一学期期末试卷
- 数学15的认识教学课件教学课件教学
- 拆除工程施工方案
- 2024年电子控制自动变速箱项目评估分析报告
- 2024年网络接口适配器项目成效分析报告
- 2024年碱锰电池项目成效分析报告
- 采购产品特定模具费用先期垫付协议书
- 不带机械操作手的机械租赁合同
- 必胜客离职合同
- 2023年药品流通行业运行统计分析报告
- 校企共建项目合同违约条款
- 中小学教师如何做课题研究设计课件
- 《1.6.1 余弦定理》说课稿
- 急诊医学测试试题及答案
- 2024年广州铁路(集团)公司招聘468人易考易错模拟试题(共500题)试卷后附参考答案
- 第四单元两、三位数除以一位数(单元测试)-2024-2025学年三年级上册数学苏教版
- 2024年保安员证考试题库及答案(共240题)
- 人教版一年级上册数学期末试题及答案
- 浙江省9+1高中联盟2023-2024学年高一上学期11月期中英语试题 含解析
- 2025届高三化学一轮复习 第13讲 铁盐、亚铁盐及其转化 课件
评论
0/150
提交评论