版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌市榔坪中学高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆的长轴为,B为短轴一端点,若,则椭圆的离心率为(
)A.
B.
C.
D.参考答案:D2.设向量a与向量b垂直,且,,则下列向量与向量共线的是(
)A.(1,8) B.(-16,-2) C.(1,-8) D.(-16,2)参考答案:B【分析】先利用向量与向量垂直,转化为两向量数量积为零,结合数量积的坐标运算得出的值,并求出向量的坐标,结合共线向量的坐标等价条件可得出选项。【详解】因为向量与向量垂直,所以,解得,所以,则向量与向量共线,故选:B。【点睛】本题考查向量垂直与共线坐标的等价条件,解题时要充分利用这些等价条件列等式求解,考查计算能力,属于中等题。3.已知在△中,点在边上,且,,则的值为(
)A
0
B
C
D
-3参考答案:A4.下列各组函数中,表示同一函数的是()A.与 B.与C.与 D.与参考答案:D【分析】通过求定义域,可以判断选项A,B的两函数都不是同一函数,通过看解析式可以判断选项C的两函数不是同一函数,从而只能选D.【详解】A.f(x)=x+1的定义域为R,的定义域为{x|x≠0},定义域不同,不是同一函数;B.的定义域为(0,+∞),g(x)=x的定义域为R,定义域不同,不是同一函数;C.f(x)=|x|,,解析式不同,不是同一函数;D.f(x)=x的定义域为R,的定义域为R,定义域和解析式都相同,是同一函数.故选:D.【点睛】考查函数的定义,判断两函数是否为同一函数的方法:看定义域和解析式是否都相同.5.已知向量与向量垂直,则z的值是()A.2 B.1 C.﹣1 D.﹣2参考答案:C【考点】M6:空间向量的数量积运算.【分析】利用向量垂直的性质直接求解.【解答】解:∵向量与向量垂直,∴=﹣2×4+3×1+(﹣5)×z=0,解得z=﹣1.故选:C.【点评】本题考查实数值的求法,考查向量垂直等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.6.若、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是(
)
A.若,则
B.若,则
C.
若则
D.若,则参考答案:D7.设函数在定义域内可导,的图像如图所示,则导函数的图像可能为(
)A. B.C. D.参考答案:D【分析】通过原函数的单调性可确定导函数的正负,结合图象即可选出答案.【详解】由函数的图象可知,当时,单调递减,所以时,,符合条件的只有D选项,故选D.【点睛】本题主要考查了函数的单调性与导函数的符号之间的对应关系,属于中档题.8.两条不平行的直线,其平行投影不可能是()A.两条平行直线 B.一点和一条直线C.两条相交直线 D.两个点参考答案:D【考点】平行投影及平行投影作图法.【分析】两条不平行的直线,要做这两条直线的平行投影,投影可能是两条平行线,可能是一点和一条直线,可能是两条相交线,不能是两个点,若想出现两个点,这两条直线需要同时与投影面垂直,这样两条线就是平行关系.【解答】解:∵有两条不平行的直线,∴这两条直线是异面或相交,其平行投影不可能是两个点,若想出现两个点,这两条直线需要同时与投影面垂直,这样两条线就是平行关系.与已知矛盾.故选D.9.欧拉公式:为虚数单位),由瑞士数学家欧拉发明,它建立了三角函数与指数函数的关系,根据欧拉公式,(
)A.1 B.-1 C.i D.-i参考答案:B【分析】由题意将复数的指数形式化为三角函数式,再由复数的运算化简即可得答案.【详解】由得故选B.【点睛】本题考查欧拉公式的应用,考查三角函数值的求法与复数的化简求值,是基础题.10.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)﹣3,则4f(x)>f′(x)()A.(,+∞) B.(,+∞) C.(,+∞) D.(,+∞)参考答案:B【考点】6B:利用导数研究函数的单调性;63:导数的运算.【分析】容易求出f′(0)=6,结合条件便可得出函数f(x)的解析式,进而求出导函数,代入4f(x)>f′(x),根据对数函数的单调性及对数的运算便可解出原方程.【解答】解:根据条件,3f(0)=3=f′(0)﹣3;∴f′(0)=6;∴f(x)=2e3x﹣1,f′(x)=6e3x;∴由4f(x)>f′(x)得:4(2e3x﹣1)>6e3x;整理得,e3x>2;∴3x>ln2;∴x>;∴原不等式的解集为(,+∞)故选:B.【点评】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性,属于中档题二、填空题:本大题共7小题,每小题4分,共28分11.有三项不同的工作,每项工作只需要1人,每人承担一项工作现有4个人可供挑选,则不同的安排方法有
种(用数字作答)。参考答案:24略12.已知直线y=(3a﹣1)x﹣1,为使这条直线经过第一、三、四象限,则实数a的取值范围是.参考答案:【考点】确定直线位置的几何要素.【分析】由于给出的直线恒过定点(0,﹣1)所以直线的斜率确定了直线的具体位置,由斜率大于0可求解a的范围.【解答】解:因为直线y=(3a﹣1)x﹣1过定点(0,﹣1),若直线y=(3a﹣1)x﹣1经过第一、三、四象限,则其斜率大于0,即3a﹣1>0,所以a>.故答案为a.【点评】本题考查了确定直线位置的几何要素,平面中,如果直线过定点,且倾斜角一定,则直线唯一确定,是基础题.13.在平面直角坐标系xOy中,点M是椭圆上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q两点.若△PQM是锐角三角形,则该椭圆离心率的取值范围是
.参考答案:14.函数在x=0处的导数=
。参考答案:2略15.已知点F是椭圆C:+=1(a>b>0)的左焦点,若椭圆C上存在两点P、Q满足=2,则椭圆C的离心率的取值范围是
.参考答案:[,1)设P((x1,y1),Q(x2,y2),F(﹣c,0),直线PQ:y=k(x+c),可得y1=﹣2y2.由,得(b2+a2k2)y2﹣2kcb2y﹣b4k2=0…②,…③由①②③得b2+a2k2=8c2,?8c2≥b2=a2﹣c2?9c2≥a2即可求解解:设P((x1,y1),Q(x2,y2),F(﹣c,0),直线PF:y=k(x+c).∵P、Q满足=2,∴y1=﹣2y2…①由,得(b2+a2k2)y2﹣2kcb2y﹣b4k2=0…②,…③由①②得,代入③得b2+a2k2=8c2,?8c2≥b2=a2﹣c2?9c2≥a2?,∴椭圆C的离心率的取值范围是[,1)故答案为[,1)16.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.参考答案:1f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.17.一个篮球运动员投篮一次得3分的概率是,得2分的概率是,不得分的概率是(),已知他投篮一次得分的数学期望是2(不计其它得分),则的最大值是__________。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线l的极坐标方程为(极轴与x轴的非负半轴重合,且单位长度相同),圆C的参数方程为(为参数)(Ⅰ)当时,求圆心C到直线l的距离;(Ⅱ)若直线l被圆C截的弦长为,求a的值.参考答案:(Ⅰ);(Ⅱ)【分析】(Ⅰ)把直线的极坐标方程化为普通方程,再把圆的参数方程化为普通方程,求出圆心,利用点到线的距离公式求出圆心到直线的距离;(Ⅱ)利用弦心距、半径、半弦长之间的关系建立关于的方程,从而解出的值。【详解】(Ⅰ)由化为直角坐标方程为:,化为直角坐标方程为,圆心为,圆心到直线的距离为;
(Ⅱ)由化为直角坐标系方程为:,由(Ⅰ)知圆圆心坐标为,,故圆心到直线的距离为:,根据弦心距、半径、半弦长之间的关系可得:,,解得;或(舍),所以;【点睛】本题考查把极坐标方程、参数方程转化为普通方程,以及直线和圆位置关系的应用,属于基础题。19.(本小题满分10分)已知均为实数,且,
求证:中至少有一个大于.(请用反证法证明)参考答案:证明:假设都不大于,即,得,
而,
即,与矛盾,
中至少有一个大于.20.已知命题p:方程x2+mx+1=0有两个不相等的实根,命题q:关于x的不等式x2﹣2(m+1)x+m(m+1)>0对任意的实数x恒成立,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.参考答案:【考点】复合命题的真假.【分析】若命题p正确,则△>0,解得m范围.若命题q正确,则△<0,解得m范围.若“p∨q”为真,“p∧q”为假,则p与q必然一真一假,即可得出.【解答】解:命题p:方程x2+mx+1=0有两个不相等的实根,∴△=m2﹣4>0,解得m>2或m<﹣2.命题q:关于x的不等式x2﹣2(m+1)x+m(m+1)>0对任意的实数x恒成立,∴△=4(m+1)2﹣4m(m+1)<0,解得m<﹣1.若“p∨q”为真,“p∧q”为假,则p与q必然一真一假,∴或,解得m>2或﹣2≤m<﹣1.∴实数m的取值范围是m>2或﹣2≤m<﹣1.21.已知椭圆E:+=1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】解法一:(1)由已知得,解得即可得出椭圆E的方程.(2)设点A(x1,y1),B(x2,y2),AB中点为H(x0,y0).直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,利用根与系数的关系中点坐标公式可得:y0=.|GH|2=.=,作差|GH|2﹣即可判断出.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=,=.直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,计算=即可得出∠AGB,进而判断出位置关系.【解答】解法一:(1)由已知得,解得,∴椭圆E的方程为.(2)设点A(x1y1),B(x2,y2),AB中点为H(x0,y0).由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,∴y0=.G,∴|GH|2==+=++.===,故|GH|2﹣=+=﹣+=>0.∴,故G在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1y1),B(x2,y2),则=,=.由,化为(m2+2)y2﹣2my﹣3=0,∴y1+y2=,y1y2=,从而==+y1y2=+=﹣+=>0.∴>0,又,不共线,∴∠AGB为锐角.故点G在以AB为直径的圆外.22.(13分)某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分成绩不小于100分合计甲班a=_________b=_________50乙班c=24d=2650合计e=______
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年废弃物处理及废品回收承包合同书3篇
- 二零二五年度仓储租赁与智能化改造合同3篇
- 二零二五年度外资独资公司股权变更操作细则合同
- 2025年个人汽车维修服务质押担保合同3篇
- 2025版高端餐饮集团租赁管理与服务保障合同3篇
- 个人委托支付事务具体合同版B版
- 2024酒店装修设计合同
- 2025年度智能果园苹果采购与销售管理合同4篇
- 2025年度园林景观设计专利授权许可合同3篇
- 2025年高校实验室设备采购与更新协议2篇
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
- 北京海淀区2025届高三下第一次模拟语文试题含解析
- 量子医学治疗学行业投资机会分析与策略研究报告
- 碳纤维增强复合材料在海洋工程中的应用情况
- 多重耐药菌病人的管理-(1)课件
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 环境监测对环境保护的意义
- 2023年数学竞赛AMC8试卷(含答案)
- 神经外科课件:神经外科急重症
- 2023年十天突破公务员面试
- 《疯狂动物城》中英文对照(全本台词)
评论
0/150
提交评论