版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省牡丹江管理局2023-2024学年九年级数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,是的直径,是的弦,若,则().A. B. C. D.2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.3.下列图标中,是中心对称图形的是()A. B. C. D.4.下列事件是必然事件的是()A.某人体温是100℃ B.太阳从西边下山C.a2+b2=﹣1 D.购买一张彩票,中奖5.三角尺在灯泡O的照射下在墙上形成的影子如图所示,OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:46.二次函数的图象是一条抛物线,下列说法中正确的是()A.抛物线开口向下 B.抛物线经过点C.抛物线的对称轴是直线 D.抛物线与轴有两个交点7.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次8.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.9.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形 B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴 D.圆的对称中心是它的圆心10.下列成语所描述的事件是必然事件的是()A.守株待兔 B.瓮中捉鳖 C.拔苗助长 D.水中捞月二、填空题(每小题3分,共24分)11.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.因为上游水库泄洪,水面宽度变为6m,则水面上涨的高度为_____m.12.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是_____.13.若点A(a,b)在双曲线y=上,则代数式ab﹣4的值为_____.14.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.15.为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)
4
5
6
9
户数
3
4
2
1
则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨 B.极差是3吨 C.平均数是5.3吨 D.众数是5吨16.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.17.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为_____.18.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.三、解答题(共66分)19.(10分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.20.(6分)已知关于x的方程.求证:不论m为何值,方程总有实数根;当m为何整数时,方程有两个不相等的正整数根?21.(6分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.22.(8分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)23.(8分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.24.(8分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.(10分)计算:2cos30°+sin45°﹣tan260°.26.(10分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据AB是⊙O的直径得出∠ADB=90°,再求出∠A的度数,由圆周角定理即可推出∠BCD的度数.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故选B.【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.2、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、C【解析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【解析】根据必然事件的特点:一定会发生的特点进行判断即可【详解】解:A、某人体温是100℃是不可能事件,本选项不符合题意;B、太阳从西边下山是必然事件,本选项符合题意;C、a2+b2=﹣1是不可能事件,本选项不符合题意;D、购买一张彩票,中奖是随机事件,本选项不符合题意.故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【解析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【详解】如图,∵OA=20cm,OA′=50cm,∴===∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选B.6、D【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2-1=0解的情况对D进行判断.【详解】A.
a=2,则抛物线y=2x2−1的开口向上,所以A选项错误;B.当x=1时,y=2×1−1=1,则抛物线不经过点(1,-1),所以B选项错误;C.抛物线的对称轴为直线x=0,所以C选项错误;D.当y=0时,2x2−1=0,此方程有两个不相等的实数解,所以D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.7、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.8、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故选C.【点睛】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.9、C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大10、B【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件依次判定即可得出答案.【详解】解:A选项为随机事件,故不符合题意;
B选项是必然事件,故符合题意;
C选项为不可能事件,故不符合题意;
D选项为不可能事件,故不符合题意;
故选:B.【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.二、填空题(每小题3分,共24分)11、.【分析】先建立适当的平面直角坐标系,然后根据题意确定函数解析式,最后求解即可.【详解】解:如图:以水面为x轴、桥洞的顶点所在直线为y轴建立平面直角坐标系,根据题意,得A(5,0),C(0,5),设抛物线解析式为:y=ax2+5,把A(5,0)代入,得a=﹣,所以抛物线解析式为:y=﹣x2+5,当x=3时,y=,所以当水面宽度变为6m,则水面上涨的高度为m.故答案为.【点睛】本题考查了二次函数的应用,建立适当的平面直角坐标系是解决本题的关键.12、(﹣2,3).【解析】根据坐标轴的对称性即可写出.【详解】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).【点睛】此题主要考查直角坐标系内的坐标变换,解题的关键是熟知直角坐标系的特点.13、﹣1【分析】根据反比例函数图象上点的坐标特征得到k=xy,由此求得ab的值,然后将其代入所求的代数式进行求值即可.【详解】解:∵点A(a,b)在双曲线y=上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14、【分析】根据旋转的性质可知△ACC1为等边三角形,进而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的长,利用线段的和差即可得出结论.【详解】根据旋转的性质可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1为等边三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中点,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案为:2.【点睛】本题考查了旋转的性质以及直角三角形的性质,得出△ADC1是含20°的直角三角形是解答本题的关键.15、B【详解】解∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故D正确;∴极差是:9﹣4=5吨,故B错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故C正确.故选B.16、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:.故答案为:.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.17、-1.【解析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.
详解:把x=0代入方程得:
|a|-1=0,
∴a=±1,
∵a-1≠0,
∴a=-1.
故选A.
点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项.18、1【解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.三、解答题(共66分)19、(1)①“匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“匀称中线”.理由见解析.【分析】(1)①先作出Rt△ABC的三条中线AD、BE、CF,然后利用匀称中线的定义分别验证即可得出答案;②设AC=2a,利用勾股定理分别把BC,AB的长度求出来即可得出答案.(2)由②知:AC:AD:CD=,设AC=,则AD=2a,CD=,过点C作CH⊥AB,垂足为H,利用的面积建立一个关于a的方程,解方程即可求出CD的长度;假设CM是△ACD的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知:AC:AD:CD=设AC=,则AD=2a,CD=,如图②,过点C作CH⊥AB,垂足为H,则∠AHC=90°,∵∠BAC=45°,∴∵解得a=2,a=﹣2(舍去),∴判断:CM不是△ACD的“匀称中线”.理由:假设CM是△ACD的“匀称中线”.则CM=AD=2AM=4,AM=2,∴又在Rt△CBH中,∠CHB=90°,CH=,BH=4-,∴即这与∠AMC=∠B相矛盾,∴假设不成立,∴CM不是△ACD的“匀称中线”.【点睛】本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.20、(1)见解析;(2).【解析】计算根的判别式,证明;因式分解求出原方程的两个根,根据m为整数、两个不相等的正整数根得到m的值.【详解】,,,,即,不论m为何值,方程总有实数根.,,,方程有两个不相等的正整数根,.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的解法解决的关键是用因式分解法求出方程的两个根.21、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理可得,m=b-4,当b=3时,m=-1;当b=-3时,m=-7;∴m的取值范围是.综上所述,m的取值范围是或.【点睛】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.22、8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:,∴,∴木杆折断之前高度故答案为m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.23、(1)见解析;(2)图②:EF=AE+CF图③:EF=AE-CF,见解析【分析】(1)连接OC,运用AAS证△AOE≌△OCF即可;(2)按(1)中的方法,连接OC,证明△AOE≌△OCF,即可得出结论【详解】(1)连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如图②,连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.24、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消化系统-课件
- 安徽课件完整版本
- 保密法学习+课件-高中主题班会
- 四年级上册科学教科版课件第4课 弹簧测力计
- 三年级下册科学教科版课件第4课时 月相变化的规律
- 《查字典课件》课件
- 玩转文献检索高效管理文献(四)EndNote文献管理软件
- 《大数据工作流程》课件
- 土地及青苗转让协议书(2篇)
- 2024年云南省普洱市公开招聘警务辅助人员(辅警)笔试模拟自测题(B)卷含答案
- 宪法知识讲座讲稿(课堂PPT)
- 多维阅读Crazy Cat 课件
- 数学建模案例分析--线性代数建模案例(20例)
- 马来酸酐接枝聚丙烯
- PE管道焊接工艺卡
- 第四章分子的对称性
- (最新)专家服务基层工作培训会领导讲话(精)
- 苏州预防性试验、交接试验费用标准
- 最新【SD高达G世纪-超越世界】各强力机体开发路线
- 专业英语四级听力模拟题
- [广州]污水处理厂工程监理投标大纲(325页完整)_secret
评论
0/150
提交评论