




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题21相似三角形(解答题部分)题型1:相似三角形的证明与计算6.(2022·江苏盐城·中考真题)如图,在与中,点、分别在边、上,且,若___________,则.请从①;②;③这三个选项中选择一个作为条件(写序号),并加以证明.15.(2021·江苏南京·中考真题)如图,与交于点O,,E为延长线上一点,过点E作,交的延长线于点F.(1)求证;(2)若,求的长.29.(2022·江苏徐州·中考真题)如图,在△ABC中,∠BAC=90°,AB=AC=12,点P在边AB上,D、E分别为BC、PC的中点,连接DE.过点E作BC的垂线,与BC、AC分别交于F、G两点.连接DG,交PC于点H.(1)∠EDC的度数为;(2)连接PG,求△APG的面积的最大值;(3)PE与DG存在怎样的位置关系与数量关系?请说明理由;(4)求的最大值.33.(2022·江苏苏州·中考真题)(1)如图1,在△ABC中,,CD平分,交AB于点D,//,交BC于点E.①若,,求BC的长;②试探究是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,和是△ABC的2个外角,,CD平分,交AB的延长线于点D,//,交CB的延长线于点E.记△ACD的面积为,△CDE的面积为,△BDE的面积为.若,求的值.
35.(2022·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;①点在线段的延长线上且;②点在线段上且.(2)若.①当时,求的长;②直接写出运动过程中线段长度的最小值.
50.(2022·江苏南京·中考真题)在平面内,先将一个多边形以自身的一个顶点为位似中心放大或缩小,再将所得多边形沿过该点的直线翻折,我们称这种变换为自位似轴对称变换,变换前后的图形成自位似轴对称.例如:如图①,先将以点为位似中心缩小,得到,再将沿过点的直线翻折,得到,则与成自位似轴对称.
(1)如图②,在中,,,,垂足为,下列3对三角形:①与;②与;③与.其中成自位似轴对称的是________(填写所有符合条件的序号);(2)如图③,已知经过自位似轴对称变换得到,是上一点,用直尺和圆规作点,使与是该变换前后的对应点(保留作图痕迹,写出必要的文字说明);(3)如图④,在中,是的中点,是内一点,,,连接,求证:.
51.(2022·江苏泰州·中考真题)已知:△ABC中,D为BC边上的一点.(1)如图①,过点D作DE∥AB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;(2)在图②,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)(3)如图③,点F在AC边上,连接BF、DF,若∠DFA=∠A,△FBC的面积等于,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.52.(2021·江苏淮安·中考真题)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的.
题型2:相似三角形与四边形综合1.(2023·江苏盐城·中考真题)综合与实践【问题情境】如图1,小华将矩形纸片先沿对角线折叠,展开后再折叠,使点落在对角线上,点的对应点记为,折痕与边,分别交于点,.【活动猜想】(1)如图2,当点与点重合时,四边形是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当,,时,求证:点,,在同一条直线上.【深入探究】(3)如图4,当与满足什么关系时,始终有与对角线平行?请说明理由.(4)在(3)的情形下,设与,分别交于点,,试探究三条线段,,之间满足的等量关系,并说明理由.
2.(2023·江苏镇江·中考真题)【发现】如图1,有一张三角形纸片,小宏做如下操作:(1)取,的中点D,E,在边上作;(2)连接,分别过点D,N作,,垂足为G,H;(3)将四边形剪下,绕点D旋转至四边形的位置,将四边形剪下,绕点E旋转至四边形的位置;(4)延长,交于点F.小宏发现并证明了以下几个结论是正确的:①点Q,A,T在一条直线上;②四边形是矩形;③;④四边形与的面积相等.【任务1】请你对结论①进行证明.【任务2】如图2,在四边形中,,P,Q分别是,的中点,连接.求证:.【任务3】如图3,有一张四边形纸,,,,,,小丽分别取,的中点P,Q,在边上作,连接,她仿照小宏的操作,将四边形分割、拼成了矩形.若她拼成的矩形恰好是正方形,求的长.
3.(2023·江苏扬州·中考真题)如图,点E、F、G、H分别是各边的中点,连接相交于点M,连接相交于点N.
(1)求证:四边形是平行四边形;(2)若▱AMCN的面积为4,求的面积.4.(2022·江苏镇江·中考真题)已知,点、、、分别在正方形的边、、、上.(1)如图1,当四边形是正方形时,求证:;(2)如图2,已知,,当、的大小有_________关系时,四边形是矩形;(3)如图3,,、相交于点,,已知正方形的边长为16,长为20,当的面积取最大值时,判断四边形是怎样的四边形?证明你的结论.
5.(2022·江苏南通·中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.(1)当点E在上时,作,垂足为M,求证;(2)当时,求的长;(3)连接,点E从点B运动到点D的过程中,试探究的最小值.16.(2021·江苏苏州·中考真题)如图,在矩形中,线段、分别平行于、,它们相交于点,点、分别在线段、上,,,连接、,与交于点.已知.设,.(1)四边形的面积______四边形的面积(填“”、“”或“”);(2)求证:;(3)设四边形的面积为,四边形的面积为,求的值.20.(2023·江苏南通·中考真题)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转45°,交射线于点.
(1)如图,点在边上,,则图中与线段相等的线段是___________;(2)过点作,垂足为,连接,求的度数;(3)在(2)的条件下,当点在边延长线上且时,求的值.23.(2023·江苏无锡·中考真题)如图,四边形是边长为的菱形,,点为的中点,为线段上的动点,现将四边形沿翻折得到四边形.
(1)当时,求四边形的面积;(2)当点在线段上移动时,设,四边形的面积为,求关于的函数表达式.
26.(2022·江苏南京·中考真题)如图,在矩形中,,,是上一点,,是上的动点,连接,是上一点,且(为常数,),分别过点、作、的垂线相交于点,设的长为,的长为.(1)若,,则的值为________;(2)求与之间的函数表达式;(3)在点从点到点的整个运动过程中,若线段上存在点,则的值应满足什么条件?直接写出的取值范围.27.(2022·江苏淮安·中考真题)在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形中,为锐角,为中点,连接,将菱形沿折叠,得到四边形,点的对应点为点,点的对应点为点.(1)【观察发现】与的位置关系是______;(2)【思考表达】连接,判断与是否相等,并说明理由;(3)如图(2),延长交于点,连接,请探究的度数,并说明理由;(4)【综合运用】如图(3),当时,连接,延长交于点,连接,请写出、、之间的数量关系,并说明理由.39.(2021·江苏南通·中考真题)如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.43.(2021·江苏无锡·中考真题)已知四边形是边长为1的正方形,点E是射线上的动点,以为直角边在直线的上方作等腰直角三角形,,设.(1)如图1,若点E在线段上运动,交于点P,交于点Q,连结,①当时,求线段的长;②在中,设边上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过的中点且垂直于的直线被等腰直角三角形截得的线段长为y,请直接写出y与m的关系式.
45.(2021·江苏宿迁·中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.47.(2023·江苏·中考真题)如图1,小丽借助几何软件进行数学探究:第一步,画出矩形和矩形,点、在边上(),且点、、、在直线的同侧;第二步,设置,矩形能在边上左右滑动;第三步,画出边的中点,射线与射线相交于点(点、不重合),射线与射线相交于点(点、不重合),观测、的长度.(1)如图,小丽取,滑动矩形,当点、重合时,______;(2)小丽滑动矩形,使得恰为边的中点.她发现对于任意的总成立.请说明理由;(3)经过数次操作,小丽猜想,设定、的某种数量关系后,滑动矩形,总成立.小丽的猜想是否正确?请说明理由.题型3:相似三角形与圆形综合7.(2023·江苏苏州·中考真题)如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.(1)求证:;(2)若,求的长.8.(2022·江苏无锡·中考真题)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证;(2)当时,求CE的长.9.(2022·江苏苏州·中考真题)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.(1)求证:为的切线;(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.12.(2021·江苏无锡·中考真题)如图,四边形内接于,是的直径,与交于点E,切于点B.(1)求证:;(2)若,,求证:.10.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠∠=∠=90°,所以∠+∠=90°,所以∠=90°,即⊥.(1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.
11.(2021·江苏泰州·中考真题)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求的值;(2)用含m的代数式表示,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.13.(2021·江苏盐城·中考真题)如图,为线段上一点,以为圆心长为半径的⊙O交于点,点在⊙O上,连接,满足.(1)求证:是⊙O的切线;(2)若,求的值.
14.(2021·江苏连云港·中考真题)如图,中,,以点C为圆心,为半径作,D为上一点,连接、,,平分.(1)求证:是的切线;(2)延长、相交于点E,若,求的值.18.(2023·江苏盐城·中考真题)如图,在中,是上(异于点,)的一点,恰好经过点,,于点,且平分.
(1)判断与的位置关系,并说明理由;(2)若,,求的半径长.24.(2023·江苏无锡·中考真题)如图,是的直径,与相交于点.过点的圆O的切线,交的延长线于点,.
(1)求的度数;(2)若,求的半径.
37.(2021·江苏淮安·中考真题)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=,求⊙O的直径.38.(2021·江苏镇江·中考真题)如图1,正方形ABCD的边长为4,点P在边BC上,⊙O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
48.(2023·江苏徐州·中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.
题型4:相似三角形与函数综合17.(2022·江苏宿迁·中考真题)如图,二次函数与轴交于(0,0),(4,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合.(1)求二次函数的表达式;(2)①求证:;②求;(3)当时,求直线与二次函数的交点横坐标.
19.(2023·江苏镇江·中考真题)如图,正比例函数与反比例函数的图象交于A,两点,点C在x轴负半轴上,.(1)______,______,点C的坐标为______.(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.22.(2023·江苏无锡·中考真题)已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.
25.(2023·江苏徐州·中考真题)如图,在平而直角坐标系中,二次函数的图象与轴分别交于点,顶点为.连接,将线段绕点按顺时针方向旋转得到线段,连接.点分别在线段上,连接与交于点.(1)求点的坐标;(2)随着点在线段上运动.①的大小是否发生变化?请说明理由;②线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段的中点在该二次函数的因象的对称轴上时,的面积为.
28.(2022·江苏淮安·中考真题)如图(1),二次函数的图像与轴交于、两点,与轴交于点,点的坐标为,点的坐标为,直线经过、两点.(1)求该二次函数的表达式及其图像的顶点坐标;(2)点为直线上的一点,过点作轴的垂线与该二次函数的图像相交于点,再过点作轴的垂线与该二次函数的图像相交于另一点,当时,求点的横坐标;(3)如图(2),点关于轴的对称点为点,点为线段上的一个动点,连接,点为线段上一点,且,连接,当的值最小时,直接写出的长.
31.(2022·江苏镇江·中考真题)如图,一次函数与反比例函数的图像交于点,与轴交于点.(1)_________,_________;(2)连接并延长,与反比例函数的图像交于点,点在轴上,若以、、为顶点的三角形与相似,求点的坐标.
32.(2022·江苏无锡·中考真题)已知二次函数图像的对称轴与x轴交于点A(1,0),图像与y轴交于点B(0,3),C、D为该二次函数图像上的两个动点(点C在点D的左侧),且.(1)求该二次函数的表达式;(2)若点C与点B重合,求tan∠CDA的值;(3)点C是否存在其他的位置,使得tan∠CDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由.34.(2022·江苏苏州·中考真题)如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;(2)若,求m的值;(3)若在第四象限内二次函数(m是常数,且)的图像上,始终存在一点P,使得,请结合函数的图像,直接写出m的取值范围.41.(2021·江苏常州·中考真题)通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.【理解】(1)如图1,,垂足分别为C、D,E是的中点,连接.已知,.①分别求线段、的长(用含a、b的代数式表示);②比较大小:__________(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.【应用】(2)如图2,在平面直角坐标系中,点M、N在反比例函数的图像上,横坐标分别为m、n.设,记.①当时,__________;当时,________;②通过归纳猜想,可得l的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立.
42.(2021·江苏常州·中考真题)如图,在平面直角坐标系中,一次函数的图像分别与x轴、y轴交于点A、B,与反比例函数的图像交于点C,连接.已知点,.(1)求b、k的值;(2)求的面积.44.(2021·江苏无锡·中考真题)在平面直角坐标系中,O为坐标原点,直线与x轴交于点B,与y轴交于点C,二次函数的图象过B、C两点,且与x轴交于另一点A,点M为线段上的一个动点,过点M作直线l平行于y轴交于点F,交二次函数的图象于点E.(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与相似时,求线段的长度;(3)已知点N是y轴上的点,若点N、F关于直线对称,求点N的坐标.
46.(2021·江苏苏州·中考真题)如图,二次函数(是实数,且)的图像与轴交于、两点(点在点的左侧),其对称轴与轴交于点,已知点位于第一象限,且在对称轴上,,点在轴的正半轴上,.连接并延长交轴于点,连接.(1)求、、三点的坐标(用数字或含的式子表示);(2)已知点在抛物线的对称轴上,当的周长的最小值等于,求的值.
49.(2023·江苏连云港·中考真题)【问题情境
建构函数】(1)如图1,在矩形中,是的中点,,垂足为.设,试用含的代数式表示.【由数想形
新知初探】(2)在上述表达式中,与成函数关系,其图像如图2所示.若取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.
【数形结合
深度探究】(3)在“取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值随的增大而增大;②函数值的取值范围是;③存在一条直线与该函数图像有四个交点;④在图像上存在四点,使得四边形是平行四边形.其中正确的是__________.(写出所有正确结论的序号)【抽象回归
拓展总结】(4)若将(1)中的“”改成“”,此时关于的函数表达式是__________;一般地,当取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).
题型5:相似三角形的实际应用问题21.(2023·江苏宿迁·中考真题)【问题背景】由光的反射定律知:反射角等于入射角(如图,即).小军测量某建筑物高度的方法如下:在地面点E处平放一面镜子,经调整自己位置后,在点D处恰好通过镜子看到建筑物AB的顶端A.经测得,小军的眼睛离地面的距离,,,求建筑物AB的高度.
【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图):他让小军站在点D处不动,将镜子移动至处,小军恰好通过镜子看到广告牌顶端G,测出;再将镜子移动至处,恰好通过镜子看到广告牌的底端A,测出.经测得,小军的眼睛离地面距离,,求这个广告牌AG的高度.
【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔AB的高度.他们给出了如下测量步骤(如图):①让小军站在斜坡的底端D处不动(小军眼睛离地面距离),小明通过移动镜子(镜子平放在坡面上)位置至E处,让小军恰好能看到塔顶B;②测出;③测出坡长;④测出坡比为(即).通过他们给出的方案,请你算出信号塔AB的高度(结果保留整数).
30.(2022·江苏徐州·中考真题)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面,坡角.在阳光下,小明观察到在地面上的影长为,在坡面上的影长为.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.
36.(2022·江苏连云港·中考真题)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点处测得阿育王塔最高点的仰角,再沿正对阿育王塔方向前进至处测得最高点的仰角,;小亮在点处竖立标杆,小亮的所在位置点、标杆顶、最高点在一条直线上,,.(注:结果精确到,参考数据:,,)(1)求阿育王塔的高度;(2)求小亮与阿育王塔之间的距离.
专题21相似三角形(解答题部分)题型1:相似三角形的证明与计算6.(2022·江苏盐城·中考真题)如图,在与中,点、分别在边、上,且,若___________,则.请从①;②;③这三个选项中选择一个作为条件(写序号),并加以证明.【答案】见解析.【分析】根据相似三角形的判定定理证明即可.【详解】解:若选①,证明:∵,∴,,∴,∵,∴,∴,又,∴.选择②,不能证明.若选③,证明:∵,∴,∴,又∵,∴.15.(2021·江苏南京·中考真题)如图,与交于点O,,E为延长线上一点,过点E作,交的延长线于点F.(1)求证;(2)若,求的长.【答案】(1)证明见解析;(2)【分析】(1)直接利用“AAS”判定两三角形全等即可;(2)先分别求出BE和DC的长,再利用相似三角形的判定与性质进行计算即可.【详解】解:(1)∵,又∵,∴;(2)∵,∴,,∵,∴,∴,∴,∴,∴的长为.29.(2022·江苏徐州·中考真题)如图,在△ABC中,∠BAC=90°,AB=AC=12,点P在边AB上,D、E分别为BC、PC的中点,连接DE.过点E作BC的垂线,与BC、AC分别交于F、G两点.连接DG,交PC于点H.(1)∠EDC的度数为;(2)连接PG,求△APG的面积的最大值;(3)PE与DG存在怎样的位置关系与数量关系?请说明理由;(4)求的最大值.【答案】(1)45°(2)9(3)PE=DG,理由见解析(4)【分析】(1)先说明∠B=45°,再说明DE是△CBP的中位线可得DEBP,然后由平行线的性质即可解答;(2)先说明△EDF和△GFC是等腰直角三角形可得DF=EF=、GF=CF=;设AP=x,则BP=12-x,BP=12-x=2DE,然后通过三角形中位线、勾股定理、线段的和差用x表示出AG,再根据三角形的面积公式列出表达式,最后运用二次函数求最值即可;(3)先证明△GFD≌△CFE,可得DG=CE,进而可得PE=DG;由△GFD≌△CFE可得∠ECF=∠DGF,进而得到∠GHE=∠CFE=90°,即可说明DG、PE的位置关系;(4)先说明△CEF∽△CDH得到,进而得到,然后将已经求得的量代入可得,然后根据求最值即可.【详解】(1)解:∵在△ABC中,∠BAC=90°,AB=AC=12∴∠B=∠ACB=45°∵,D、E分别为BC、PC的中点∴DEBP,DE=∴∠EDC=∠B=45°.(2)解:如图:连接PG∵∠EDC=∠ACB=45°,GF⊥DC∴△EDF和△GFC是等腰直角三角形∴DF=EF=,GF=CF=,设AP=x,则BP=12-x,BP=12-x=2DE∴DE=,EF=∵Rt△APC,∴PC=∴CE=∵Rt△EFC∴FC=FG=∴CG=CF=∴AG=12-CG=12-=∴S△APG=所以当x=6时,S△APG有最大值9.
(3)解:DG=PE,DG⊥PE,理由如下:∵DF=EF,∠CFE=∠GFD,GF=CF∴△GFD≌△CFE(SAS)∴DG=CE∵E是PC的中点∴PE=CE∴PE=DG;∵△GFD≌△CFE∴∠ECF=∠DGF∵∠CEF=∠PEG∴∠GHE=∠EFC=90°,即DG⊥PE.(4)解:∵△GFD≌△CFE∴∠CEF=∠CDH又∵∠ECF=∠DCH∴△CEF∽△CDH∴,即∴∵FC=,CE=,CD=∴∴的最大值为.33.(2022·江苏苏州·中考真题)(1)如图1,在△ABC中,,CD平分,交AB于点D,//,交BC于点E.①若,,求BC的长;②试探究是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,和是△ABC的2个外角,,CD平分,交AB的延长线于点D,//,交CB的延长线于点E.记△ACD的面积为,△CDE的面积为,△BDE的面积为.若,求的值.【答案】(1)①;②是定值,定值为1;(2)【分析】(1)①证明,根据相似三角形的性质求解即可;②由,可得,由①同理可得,计算;(2)根据平行线的性质、相似三角形的性质可得,又,则,可得,设,则.证明,可得,过点D作于H.分别求得,进而根据余弦的定义即可求解.【详解】(1)①∵CD平分,∴.∵,∴.∴.∵,∴.∴.∴.∴.∴.∴.②∵,∴.由①可得,∴.∴.∴是定值,定值为1.(2)∵,∴.∵,∴.又∵,∴.设,则.∵CD平分,∴.∵,∴.∴.∵,∴.∴.∴.∵,∴.∴.∴.∴.如图,过点D作于H.∵,∴.∴.35.(2022·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;①点在线段的延长线上且;②点在线段上且.(2)若.①当时,求的长;②直接写出运动过程中线段长度的最小值.【答案】(1)①②(2)①②4【分析】(1)①算出各个内角,发现其是等腰三角形即可推出;②算出各内角发现其是30°的直角三角形即可推出;(2)①分别过点A,E作BC的垂线,得到一线三垂直的相似,即,设,,利用30°直角三角形的三边关系,分别表示出,,,,列式求解a即可;②分别过点A,E作BC的垂线,相交于点G,H,证明可得,然后利用完全平方公式变形得出,求出AE的取值范围即可.【详解】(1)①∵在中,,∴∵∴,在中,∴∴∴;②如图:∵∴,∴在中,∴∴;(2)①分别过点A,E作BC的垂线,相交于点H,G,则∠EGD=∠DHA=90°,∴∠GED+∠GDE=90°,∵∠HDA+∠GDE=90°,∴∠GED=∠HDA,∴,设,,则,,在中,,AB=6则,在中,,则在中,,∴∴由得,即解得:,(舍)故;②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,∵∠ADE=90°,∴∠EDH=90°-∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴,∴,∴,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴,∴,∴=,∵∴,∴,∵,∴,∵,∴,∴,故AE的最小值为4.50.(2022·江苏南京·中考真题)在平面内,先将一个多边形以自身的一个顶点为位似中心放大或缩小,再将所得多边形沿过该点的直线翻折,我们称这种变换为自位似轴对称变换,变换前后的图形成自位似轴对称.例如:如图①,先将以点为位似中心缩小,得到,再将沿过点的直线翻折,得到,则与成自位似轴对称.
(1)如图②,在中,,,,垂足为,下列3对三角形:①与;②与;③与.其中成自位似轴对称的是________(填写所有符合条件的序号);(2)如图③,已知经过自位似轴对称变换得到,是上一点,用直尺和圆规作点,使与是该变换前后的对应点(保留作图痕迹,写出必要的文字说明);(3)如图④,在中,是的中点,是内一点,,,连接,求证:.【答案】(1)①②(2)见解析(3)见解析【分析】(1)根据题中定义作出图形,即可得出结论;(2)先根据题意和轴对称性质作出轴对称前的,即以点为位似中心缩小的,在作出Q对应的,进而作出点对应的点P即可;(3)延长交于点,证明和得到,进而得到,证明得到,利用平行线的判定即可得出结论.【详解】(1)解:①与成自位似轴对称,对称轴为的角平分线所在的直线,如图;
②与成自位似轴对称,对称轴为平分线所在的直线,如图,
,③与不成自位似轴对称,故答案为:①②;(2)解:如图,1)分别在和上截取,,2)连接,在上截取,3)连接并延长交于P,则点即为所求;
(3)证明:延长交于点,∵,,∴,∴,∵,∴,∴,∴,∵是中点,∴,∴,∴,又∵,∴,∴,∴.
51.(2022·江苏泰州·中考真题)已知:△ABC中,D为BC边上的一点.(1)如图①,过点D作DE∥AB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;(2)在图②,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)(3)如图③,点F在AC边上,连接BF、DF,若∠DFA=∠A,△FBC的面积等于,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.【答案】(1)2(2)图见详解(3)直线BC与⊙F相切,理由见详解【分析】(1)由题意易得,则有,然后根据相似三角形的性质与判定可进行求解;(2)作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;(3)作BR∥CF交FD的延长线于点R,连接CR,证明四边形ABRF是等腰梯形,推出AB=FR,由CF∥BR,推出,推出CD⊥DF,然后问题可求解.【详解】(1)解:∵DE∥AB,∴,∴,∵AB=5,BD=9,DC=6,∴,∴;(2)解:作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;如图所示:点F即为所求,(3)解:直线BC与⊙F相切,理由如下:作BR∥CF交FD的延长线于点R,连接CR,如图,∵∠DFA=∠A,∴四边形ABRF是等腰梯形,∴,∵△FBC的面积等于,∴,∴CD⊥DF,∵FD是⊙F的半径,∴直线BC与⊙F相切.52.(2021·江苏淮安·中考真题)如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的.【答案】(1)见解析;(2);(3)见解析【分析】(1)将A、B、C三点分别绕点A按顺时针方向旋转90°画出依次连接即可;(2)勾股定理求出AC,由面积公式即可得到答案;(3)利用相似构造△CFD∽△C1ED即可.【详解】解:(1)如图:图中△AB1C1即为要求所作三角形;(2)∵AC==,由旋转知AC=AC1,∠CAC1=90°,∴△ACC1的面积为×AC×AC1=,故答案为:;(3)连接EF交CC1于D,即为所求点D,理由如下:∵CF∥C1E,∴△CFD∽△C1ED,∴=,∴CD=CC1,∴△ACD的面积=△ACC1面积的.题型2:相似三角形与四边形综合1.(2023·江苏盐城·中考真题)综合与实践【问题情境】如图1,小华将矩形纸片先沿对角线折叠,展开后再折叠,使点落在对角线上,点的对应点记为,折痕与边,分别交于点,.【活动猜想】(1)如图2,当点与点重合时,四边形是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当,,时,求证:点,,在同一条直线上.【深入探究】(3)如图4,当与满足什么关系时,始终有与对角线平行?请说明理由.(4)在(3)的情形下,设与,分别交于点,,试探究三条线段,,之间满足的等量关系,并说明理由.
【答案】(1)菱形;(2)证明见解答;(3),证明见解析;(4),理由见解析【分析】(1)由折叠可得:,,再证得,可得,利用菱形的判定定理即可得出答案;(2)设与交于点,过点作于,利用勾股定理可得,再证明,可求得,进而可得,再由,可求得,,,运用勾股定理可得,运用勾股定理逆定理可得,进而可得,即可证得结论;(3)设,则,利用折叠的性质和平行线性质可得:,再运用三角形内角和定理即可求得,利用解直角三角形即可求得答案;(4)过点作于,设交于,设,,利用解直角三角形可得,,即可得出结论.【详解】解:(1)当点与点重合时,四边形是菱形.理由:设与交于点,如图,由折叠得:,,,四边形是矩形,,,,,四边形是菱形.故答案为:菱形.(2)证明:四边形是矩形,,,,,,,,,如图,设与交于点,过点作于,由折叠得:,,,,,,,即,,,,,,,即,,,,,,,,,,点,,在同一条直线上.(3)当时,始终有与对角线平行.理由:如图,设、交于点,四边形是矩形,,,,设,则,由折叠得:,,,,,,,,,即,,,,;(4),理由如下:如图,过点作于,设交于,由折叠得:,,,设,,由(3)得:,,,,,,四边形是矩形,,,,,,,,,,,,,,,即.2.(2023·江苏镇江·中考真题)【发现】如图1,有一张三角形纸片,小宏做如下操作:(1)取,的中点D,E,在边上作;(2)连接,分别过点D,N作,,垂足为G,H;(3)将四边形剪下,绕点D旋转至四边形的位置,将四边形剪下,绕点E旋转至四边形的位置;(4)延长,交于点F.小宏发现并证明了以下几个结论是正确的:①点Q,A,T在一条直线上;②四边形是矩形;③;④四边形与的面积相等.【任务1】请你对结论①进行证明.【任务2】如图2,在四边形中,,P,Q分别是,的中点,连接.求证:.【任务3】如图3,有一张四边形纸,,,,,,小丽分别取,的中点P,Q,在边上作,连接,她仿照小宏的操作,将四边形分割、拼成了矩形.若她拼成的矩形恰好是正方形,求的长.
【答案】[任务1]见解析;[任务2]见解析;[任务3]【分析】(1)由旋转的性质得对应角相等,即,,由三角形内角和定理得,从而得,即Q,A,T三点共线;(2)梯形中位线的证明问题常转化为三角形的中位线问题解决,连接并延长,交的延长线于点E,证明,可得,,由三角形中位线定理得;(3)过点D作于点R,由,得,从而得,由【发现】得,则,,由【任务2】的结论得,由勾股定理得.过点Q作,垂足为H.由及得,从而得,证明,得,从而得.【详解】[任务1]证法1:由旋转得,,.在中,,∴,∴点Q,A,T在一条直线上.证法2:由旋转得,,.∴,.∴点Q,A,T在一条直线上.[任务2]证明:如图1,连接并延长,交的延长线于点E.∵,∴.∵Q是的中点,∴.在和中,∴.∴,.又∵P是的中点,∴,∴是的中位线,∴,∴.
[任务3]的方法画出示意图如图2所示.
由【任务2】可得,.过点D作,垂足为R.在中,,∴.∴,∴,.在中,由勾股定理得.过点Q作,垂足为H.∵Q是的中点,∴.在中,,∴.又由勾股定理得.由,得.又∵,∴.∴,即,∴.∴.3.(2023·江苏扬州·中考真题)如图,点E、F、G、H分别是各边的中点,连接相交于点M,连接相交于点N.
(1)求证:四边形是平行四边形;(2)若▱AMCN的面积为4,求的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形,四边形均为平行四边形,进而得到:,即可得证;(2)连接,推出,,进而得到,求出,再根据,即可得解.【详解】(1)证明:∵,∴,∵点E、F、G、H分别是各边的中点,∴,∴四边形为平行四边形,同理可得:四边形为平行四边形,∴,∴四边形是平行四边形;(2)解:连接,
∵为的中点,∴,∴,∴,∴,同理可得:∴,∴,∵,∴.4.(2022·江苏镇江·中考真题)已知,点、、、分别在正方形的边、、、上.(1)如图1,当四边形是正方形时,求证:;(2)如图2,已知,,当、的大小有_________关系时,四边形是矩形;(3)如图3,,、相交于点,,已知正方形的边长为16,长为20,当的面积取最大值时,判断四边形是怎样的四边形?证明你的结论.
【答案】(1)见解析(2)(3)平行四边形,证明见解析【分析】(1)利用平行四边形的性质证得,根据角角边证明.(2)当,证得,是等腰直角三角形,∠HEF=∠EFG=90°,即可证得四边形EFGH是矩形.(3)利用正方形的性质证得为平行四边形,过点作,垂足为点,交于点,由平行线分线段成比例,设,,,则可表示出,从而把△OEH的面积用x的代数式表示出来,根据二次函数求出最大值,则可得OE=OG,OF=OH,即可证得平行四边形.【详解】(1)∵四边形为正方形,∴,∴.∵四边形为正方形,∴,,∴,∴.在和中,∵,,,∴.∴.∴;(2);证明如下:∵四边形为正方形,∴,AB=BC=AD=CD,∵AE=AH,CF=CG,AE=CF,∴AH=CG,∴,∴EH=FG.∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴是等腰直角三角形,∴∠BEF=∠BFE=45°,∵AE=AH,CF=CG,∴∠AEH=∠CFG=45°,∴∠HEF=∠EFG=90°,∴EH∥FG,∴四边形EFGH是矩形.(3)∵四边形为正方形,∴.∵,,∴四边形为平行四边形.∴.∴.过点作,垂足为点,交于点,∴.∵,设,,,则,∴.∴.∴当时,的面积最大,∴,,∴四边形是平行四边形.5.(2022·江苏南通·中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.(1)当点E在上时,作,垂足为M,求证;(2)当时,求的长;(3)连接,点E从点B运动到点D的过程中,试探究的最小值.【答案】(1)见详解(2)或(3)【分析】(1)证明即可得证.(2)分情况讨论,当点E在BC上时,借助,在中求解;当点E在CD上时,过点E作EG⊥AB于点G,FH⊥AC于点H,借助并利用勾股定理求解即可.(3)分别讨论当点E在BC和CD上时,点F所在位置不同,DF的最小值也不同,综合比较取最小即可.【详解】(1)如图所示,由题意可知,,,,由旋转性质知:AE=AF,在和中,,,.(2)当点E在BC上时,在中,,,则,在中,,,则,由(1)可得,,在中,,,则,当点E在CD上时,如图,过点E作EG⊥AB于点G,FH⊥AC于点H,同(1)可得,,由勾股定理得;故CF的长为或.(3)如图1所示,当点E在BC边上时,过点D作于点H,由(1)知,,故点F在射线MF上运动,且点F与点H重合时,DH的值最小.在与中,,,,即,,,,在与中,,,,即,,故的最小值;如图2所示,当点E在线段CD上时,将线段AD绕点A顺时针旋转的度数,得到线段AR,连接FR,过点D作,,由题意可知,,在与中,,,,故点F在RF上运动,当点F与点K重合时,DF的值最小;由于,,,故四边形DQRK是矩形;,,,,故此时DF的最小值为;由于,故DF的最小值为.16.(2021·江苏苏州·中考真题)如图,在矩形中,线段、分别平行于、,它们相交于点,点、分别在线段、上,,,连接、,与交于点.已知.设,.(1)四边形的面积______四边形的面积(填“”、“”或“”);(2)求证:;(3)设四边形的面积为,四边形的面积为,求的值.【答案】(1)=;(2)见解析;(3)【分析】(1)由四边形为矩形及,,证明四边形为矩形,四边形、、均为矩形.再利用矩形的面积公式求解四边形的面积与四边形的面积,从而可得答案;(2)由,,结合,,结合,证明.可得.从而可得结论;(3)解法一:连接,,证明.可得.再证明.可得,从而可得答案;解法二:连接、.证明四边形的四边形.从而可得答案.【详解】解:(1)∵四边形为矩形,∴.∵,∴,.∵,∴.∴四边形为矩形.同理可得:四边形、、均为矩形.∵,,,∴,,,.∴四边形的面积,四边形的面积..四边形的面积四边形的面积.(2)∵,,由(1)中,,∴,即,∵,∴.∴.∵,∴.(3)解法一:连接,,∵,,∴.∵,∴.∴,.由(2),得,∴.∵,∴.∴.∵,∴.∴.解法二:连接、.∵,,∴.∵,∴.∴,,.由(2)中,得,∴.∵,∴.∴,,.∴,,.又,,∴四边形的四边形.∴.20.(2023·江苏南通·中考真题)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转45°,交射线于点.
(1)如图,点在边上,,则图中与线段相等的线段是___________;(2)过点作,垂足为,连接,求的度数;(3)在(2)的条件下,当点在边延长线上且时,求的值.【答案】(1)(2)的度数为或(3)【分析】(1)根据正方形的性质和已知条件得到,即可得到答案;(2)当点在边上时,过点作,垂足为,延长交于点,证明,得到,推出为等腰直角三角形,得到答案;当点在边上时,过点作,垂足为,延长交延长线于点,则四边形是矩形,同理得到,得到为等腰直角三角形得到答案;(3)由平行的性质得到分线段成比例.【详解】(1).正方形,,,,.(2)解:①当点在边上时(如图),过点作,垂足为,延长交于点.,四边形是矩形..,,,为等腰直角三角形,....,.为等腰直角三角形,..
②当点在边上时(如图),过点作,垂足为,延长交延长线于点,则四边形是矩形,同理,..为等腰直角三角形,..
综上,的度数为45°或135°.(3)解:当点在边延长线上时,点在边上(如图),设,则...,.23.(2023·江苏无锡·中考真题)如图,四边形是边长为的菱形,,点为的中点,为线段上的动点,现将四边形沿翻折得到四边形.
(1)当时,求四边形的面积;(2)当点在线段上移动时,设,四边形的面积为,求关于的函数表达式.
【答案】(1)(2)【分析】(1)连接、,根据菱形的性质以及已知条件可得为等边三角形,根据,可得为等腰直角三角形,则,,根据翻折的性质,可得,,则,;同理,,;进而根据,即可求解;(2)等积法求得,则,根据三角形的面积公式可得,证明,根据相似三角形的性质,得出,根据即可求解.【详解】(1)如图,连接、,四边形为菱形,,,为等边三角形.为中点,,,,.,为等腰直角三角形,,,翻折,,,,;.同理,,,∴;(2)如图,连接、,延长交于点.,,,.∵,,.,则,,,.∵,.26.(2022·江苏南京·中考真题)如图,在矩形中,,,是上一点,,是上的动点,连接,是上一点,且(为常数,),分别过点、作、的垂线相交于点,设的长为,的长为.(1)若,,则的值为________;(2)求与之间的函数表达式;(3)在点从点到点的整个运动过程中,若线段上存在点,则的值应满足什么条件?直接写出的取值范围.【答案】(1)5(2)(3)【分析】(1)根据,得,则,代入计算即可;(2)利用,得,再由,得,即可证明结论;(3)根据点P在上,可得,再由点G在上,可得,进而解决问题.【详解】(1)解:∵,∴,∵四边形是矩形,∴,∴,∴,∴,∵,∴,∵,∴,∵,∴,∴,∴,故答案为:5;(2)解:∵,,∴,又∵,∴,∴,在中,,,∴,又∵,∴,∴即;(3)解:若点在上,则,由(2)得,∴,∵点从点到点运动,∴,∴,∴即,又∵是上一点,∴,∴.27.(2022·江苏淮安·中考真题)在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形中,为锐角,为中点,连接,将菱形沿折叠,得到四边形,点的对应点为点,点的对应点为点.(1)【观察发现】与的位置关系是______;(2)【思考表达】连接,判断与是否相等,并说明理由;(3)如图(2),延长交于点,连接,请探究的度数,并说明理由;(4)【综合运用】如图(3),当时,连接,延长交于点,连接,请写出、、之间的数量关系,并说明理由.【答案】(1);(2),理由见解析;(3),理由见解析;(4),理由见解析.【分析】(1)利用菱形的性质和翻折变换的性质判断即可;(2)连接,,由可知点B、、C在以为直径,E为圆心的圆上,则,由翻折变换的性质可得,证明,可得结论;(3)连接,,,延长至点H,求出,,可得,然后证明,可得,进而得到即可解决问题.(4)延长交的延长线于点,过点作交的延长线于点,设,,解直角三角形求出,,利用勾股定理求出,然后根据相似三角形的判定和性质及平行线分线段成比例求出,,再根据勾股定理列式即可得出结论.【详解】(1)解:∵在菱形中,,∴由翻折的性质可知,,故答案为:;(2)解:,理由:如图,连接,,∵为中点,∴,∴点B、、C在以为直径,E为圆心的圆上,∴,∴,由翻折变换的性质可知,∴,∴;(3)解:结论:;理由:如图,连接,,,延长至点H,由翻折的性质可知,设,,∵四边形是菱形,
∴,,∴,∴,∴,∵,点B、、C在以为直径,E为圆心的圆上,∴,∵,∴,∴,∴,∵,∴,∴,∵,∴,∵,∴,∴;(4)解:结论:,理由:如图,延长交的延长线于点,过点作交的延长线于点,设,,∵,∴,∴,∴,,在中,则有,∴,∴,,∵,∴,∴,∴∴,∵,∴,∴,∵,∴,∴.39.(2021·江苏南通·中考真题)如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.【答案】(1).(2)DG//CF.理由见解析.(3).【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为算出.(2)作辅助线BF、AC,先导角证明是等腰直角三角形、是等腰直角三角形.再证明、,最后用内错角相等,两直线平行,证得DG//CF.(3)为等腰三角形,要分三种情况讨论:①FH=BH②BF=FH③BF=BH,根据题目具体条件,舍掉了②、③种,第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A关于直线BE的对称点为点FBE是AF的垂直平分线,AB=BF四边形ABCD是正方形AB=BC,.(2)位置关系:平行.理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知,是等腰直角三角形四边形ABCD是正方形是等腰直角三角形垂直平分AF在和中,在和中,CF//DG(3)为等腰三角形有三种情况:①FH=BH②BF=FH③BF=BH,要分三种情况讨论:①当FH=BH时,作于点M由(1)可知:AB=BF,四边形ABCD是正方形设AB=BF=BC=a将绕点B顺时针旋转得到FH=BH是等腰三角形,在和中,BM=AE=②当BF=FH时,设FH与BC交点为O绕点B顺时针旋转得到由(1)可知:此时,与重合,与题目不符,故舍去③当BF=BH时,由(1)可知:AB=BF设AB=BF=a四边形ABCD是正方形AB=BC=aBF=BHBF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去.故答案为:43.(2021·江苏无锡·中考真题)已知四边形是边长为1的正方形,点E是射线上的动点,以为直角边在直线的上方作等腰直角三角形,,设.(1)如图1,若点E在线段上运动,交于点P,交于点Q,连结,①当时,求线段的长;②在中,设边上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过的中点且垂直于的直线被等腰直角三角形截得的线段长为y,请直接写出y与m的关系式.
【答案】(1)①;②,h最大值=;(2)【分析】(1)①过点F作FM⊥BC,交BC的延长线于点M,先证明,可得FM=,CM=,进而即可求解;②由,得CP=,把绕点A顺时针旋转90°得,可得EQ=DQ+BE,利用勾股定理得DQ=,EQ=,QP=,结合三角形面积公式,即可得到答案;(2)以点B为坐标原点,BC所在直线为x轴,建立直角坐标系,则E(m,0),A(0,1),F(1+m,m),从而求出AE的解析式为:y=x+1,AF的解析式为:y=x+1,EF的解析式为:y=mx-m2,再分两种情况:①当0≤m≤时,②当m>时,分别求解即可.【详解】解:(1)①过点F作FM⊥BC,交BC的延长线于点M,∵在等腰直角三角形中,,AE=FE,在正方形中,∠B=90°,∴∠BAE+∠AEB=∠FEM+∠AEB,∴∠BAE=∠FEM,又∵∠B=∠FME,∴,∴FM=BE=,EM=AB=BC,∴CM=BE=,∴CF=;②∵∠BAE=∠FEC,∠B=∠ECP=90°,∴,∴,即:,∴CP=,把绕点A顺时针旋转90°得,则AG=AQ,∠GAB=∠QAD,GB=DQ,∵∠EAF=45°,∴∠BAE+∠QAD=∠BAE+∠GAB=90°-45°=45°,即:∠GAE=∠EAF=45°,∵∠ABG=∠ABE=90°,∴B、G、E三点共线,又∵AE=AE,∴,∴EQ=EG=GB+BE=DQ+BE,∴在中,,即:,∴DQ=,∴EQ=DQ+BE=+m=,QP=1--()=,∴,即:×(1-m)=×h,∴=,即m=时,h最大值=;(3)以点B为坐标原点,BC所在直线为x轴,建立直角坐标系,则E(m,0),A(0,1),∵直线m过AB的中点且垂直AB,∴直线m的解析式为:x=,过点F作FM⊥x轴于点M,由(1)可知:,即FM=BE,EM=AB,∴F(1+m,m),设AE的解析式为:y=kx+b,把E(m,0),A(0,1)代入上式,得,解得:,∴AE的解析式为:y=x+1,同理:AF的解析式为:y=x+1,EF的解析式为:y=mx-m2,①当0≤m≤时,如图,G(,),N(,m-m2),∴y=-(m-m2)=,②当m>时,如图,G(,),N(,),∴y=-=,综上所述:.45.(2021·江苏宿迁·中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.【答案】(1);(2);(3)【分析】(1)由旋转的性质联想到连接,证明即可求解;(2)由M、N分别是CF、BE的中点,联想到中位线,故想到连接BM并延长使BM=MH,连接FH、EH,则可证即可得到,再由四边形内角和为可得,则可证明,即是等腰直角三角形,最后利用中位线的性质即可求解;(3)Q、N两点因旋转位置发生改变,所以Q、N两点的轨迹是圆,又Q、N两点分别是BF、BE中点,所以想到取AB的中点O,结合三角形中位线和圆环面积的求解即可解答.【详解】解:(1)连接四边形ABCD和四边形AEFG是正方形分别平分即且都是等腰直角三角形(2)连接BM并延长使BM=MH,连接FH、EH是CF的中点又在四边形BEFC中又即即又四边形ABCD和四边形AEFG是正方形三角形BEH是等腰直角三角形M、N分别是BH、BE的中点(3)取AB的中点O,连接OQ、ON,连接AF在中,O、Q分别是AB、BF的中点同理可得所以QN扫过的面积是以O为圆心,和为半径的圆环的面积.47.(2023·江苏·中考真题)如图1,小丽借助几何软件进行数学探究:第一步,画出矩形和矩形,点、在边上(),且点、、、在直线的同侧;第二步,设置,矩形能在边上左右滑动;第三步,画出边的中点,射线与射线相交于点(点、不重合),射线与射线相交于点(点、不重合),观测、的长度.(1)如图,小丽取,滑动矩形,当点、重合时,______;(2)小丽滑动矩形,使得恰为边的中点.她发现对于任意的总成立.请说明理由;(3)经过数次操作,小丽猜想,设定、的某种数量关系后,滑动矩形,总成立.小丽的猜想是否正确?请说明理由.【答案】(1);(2)见解析;(3)小丽的猜想正确,理由见解析.【分析】(1)证,利用相似三角形的性质即矩形的性质即可得解;(2)证得,同理可得,由,,得,进而有,再根据矩形的性质即可得证;(3)当时,取的中点,连接、,由,恰为边的中点,得,进而证,得,于是有,由平行线分线段成比例得,同理可证:,于是有,从而即可得解.【详解】(1)解:∵四边形和四边形都是矩形,∴,,,∵,,∴,,∴是的中点,∴,∴,∵,,∴,∴即,∴,∴,故答案为:;(2)证明:如下图,解:∵小丽滑动矩形,使得恰为边的中点,∴,,∵四边形和四边形都是矩形,∴,,,∵,∴,∴,同理可得,∵,,∴,∴,∵,∴,∵,∴;(3)解:小丽的猜想正确,当时,总成立,理由如下:如下图,取的中点,连接、,
∵四边形和四边形都是矩形,∴,,,∵,,∴,∵恰为边的中点,是的中点,∴,,∴,∴,∵,∴,∴,∴,∴,同理可证:,∵,∴,∴,∴小丽的猜想正确.题型3:相似三角形与圆形综合7.(2023·江苏苏州·中考真题)如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.(1)求证:;(2)若,求的长.【答案】(1)证明见解析(2)【分析】(1)分别证明,,从而可得结论;(2)求解,,可得,证明,设,则,,证明,可得,可得,,,从而可得答案.【详解】(1)证明:∵是的直径,,∴,∵,∴.(2)∵,,∴,,∵,∴,∵,∴,∴,设,则,,∵,,∴,∴,∴,则,∴,∴,∴.8.(2022·江苏无锡·中考真题)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证;(2)当时,求CE的长.【答案】(1)见解析(2)【分析】(1)根据同弧所对圆周角相等可得,再由对顶角相等得,故可证明绪论;(2)根据可得由可得出连接AE,可证明,得出代入相关数据可求出,从而可求出绪论.【详解】(1)∵所对的圆周角是,∴,又,∴;(2)∵△是等边三角形,∴∵,∴∴∵∴,∴∴连接如图,∵∴∴∠又∠,∴△∴,∴∴,∴(负值舍去)∴,解得,9.(2022·江苏苏州·中考真题)如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.(1)求证:为的切线;(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.【答案】(1)见解析(2)【分析】(1)方法一:如图1,连接OC,OD.由,,可得,由是的直径,D是的中点,,进而可得,即可证明CF为的切线;方法二:如图2,连接OC,BC.设.同方法一证明,即可证明CF为的切线;(2)方法一:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,勾股定理求得,证明,得出,根据,求得,进而求得,根据勾股定理即可求得;方法二:如图4,连接AD.由方法一,得.,D是的中点,可得,根据勾股定理即可求得.【详解】(1)(1)方法一:如图1,连接OC,OD.∵,∴.∵,∴.
∵,∴.∵是的直径,D是的中点,∴.∴.∴,即.∴.∴CF为的切线.方法二:如图2,连接OC,BC.设.∵AB是的直径,D是的中点,∴.∴.∵,∴.
∴.∵,∴.∴.∵AB是的直径,∴.∴.∴,即.∴.∴CF为的切线.(2)解:方法一:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,,解之得.∵,∴.
∵,∴.∴.∴.∵G为BD中点,∴.∴,.∴.∴.方法二:如图4,连接AD.由方法一,得.∵AB是的直径,∴.∵,D是的中点,∴.∵G为BD中点,∴.∴.12.(2021·江苏无锡·中考真题)如图,四边形内接于,是的直径,与交于点E,切于点B.(1)求证:;(2)若,,求证:.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵是的直径,∴∠ABC=90°,∵切于点B,∴∠OBP=90°,∴,∴;(2)∵,,∴,∵OB=OC,∴,∴∠AOB=20°+20°=40°,∵OB=OA,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=∠AOB=20°,∵是的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB,∵,∴,∴.10.(2022·江苏宿迁·中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠∠=∠=90°,所以∠+∠=90°,所以∠=90°,即⊥.(1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.【答案】(1);见解析(2)见解析【分析】(1)取格点,作射线交于点P,则根据垂径定理可知,点P即为所求作;(2)取格点I,连接MI交AB于点P,点P即为所求作.利用正切函数证得∠FMI=∠MNA,利用圆周角定理证得∠B=∠MNA,再推出△PAM∽△MAB,即可证明结论.【详解】(1)解:【操作探究】在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠∠=∠=90°,所以∠+∠=90°,所以∠=90°,即⊥.故答案为:;取格点,作射线交于点P,点P即为所求作;(2)解:取格点I,连接MI交AB于点P,点P即为所求作;证明:作直径AN,连接BM、MN,在Rt△FMI中,,在Rt△MNA中,,所以.∴∠FMI=∠MNA,∵∠B=∠MNA,∴∠AMP=∠B,∵∠PAM=∠MAB,∴△PAM∽△MAB,∴,∴=·.11.(2021·江苏泰州·中考真题)如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求的值;(2)用含m的代数式表示,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.【答案】(1)①见解析;②2;(2);(3)存在半径为1的圆,45°【分析】(1)①连接OD,则易得CD垂直平分线段OA,从而OD=AD,由OA=OD,即可得△OAD是等边三角形,从而可得结论;②连接AQ,由圆周角定理得:∠ABQ=∠ADH,从而其余弦值相等,因此可得,由①可得AB、AD的值,从而可得结论;(2)连接AQ、BD,首先与(1)中的②相同,有,由△APD∽△ADB,可求得AD的长,从而求得结果;(3)由(2)的结论可得:,从而BQ2﹣2DH2+PB2当m=1时,即可得是一个定值,从而可求得∠Q的值.【详解】(1)①如图,连接OD,则OA=OD∵AB=PA+PB=1+3=4∴OA=∴OP=AP=1即点P是线段OA的中点∵CD⊥AB∴CD垂直平分线段OA∴OD=AD∴OA=OD=AD即△OAD是等边三角形∴∠OAD=60°
②连接AQ∵AB是直径∴AQ⊥BQ根据圆周角定理得:∠ABQ=∠ADH,∴∵AH⊥DQ在Rt△ABQ和Rt△ADH中∴∵AD=OA=2,AB=4∴(2)连接AQ、BD与(1)中的②相同,有∵AB是直径∴AD⊥BD∴∠DAB+∠ADP=∠DAB+∠ABD=90°∴∠ADP=∠ABD∴Rt△APD∽Rt△ADB∴∵AB=PA+PB=1+m∴∴(3)由(2)知,∴BQ=即∴BQ2﹣2DH2+PB2=当m=1时,BQ2﹣2DH2+PB2是一个定值,且这个定值为1,此时PA=PB=1,即点P与圆心O重合∵CD⊥AB,OA=OD=1∴△AOD是等腰直角三角形∴∠OAD=45°∵∠OAD与∠Q对着同一条弧
∴∠Q=∠OAD=45°故存在半径为1的圆,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值1,此时∠Q的度数为45.13.(2021·江苏盐城·中考真题)如图,为线段上一点,以为圆心长为半径的⊙O交于点,点在⊙O上,连接,满足.(1)求证:是⊙O的切线;(2)若,求的值.【答案】(1)见解析;(2)【分析】(1)连接,把转化为比例式,利用三角形相似证明即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接∵∴,又∵∠P=∠P,∴∴,∵∴又∵∴∴已知是上的点,AB是直径,∴,∴∴,∴PC是圆的切线;(2)设,则,∴在中∵,,∴已知,∴.14.(2021·江苏连云港·中考真题)如图,中,,以点C为圆心,为半径作,D为上一点,连接、,,平分.(1)求证:是的切线;(2)延长、相交于点E,若,求的值.【答案】(1)见解析;(2)【分析】(1)利用SAS证明,可得,即可得证;(2)由已知条件可得,可得出,进而得出即可求得;【详解】(1)∵平分,∴.∵,,∴.∴.∴,∴是的切线.(2)由(1)可知,,又,∴.∵,且,∴,∴.∵,∴.∵∴18.(2023·江苏盐城·中考真题)如图,在中,是上(异于点,)的一点,恰好经过点,,于点,且平分.
(1)判断与的位置关系,并说明理由;(2)若,,求的半径长.【答案】(1)见解析(2)的半径长为.【分析】(1)连接,证明,即可证得,从而证得是圆的切线;(2)设,则,利用勾股定理求得,推出,利用相似三角形的性质列得比例式,据此求解即可.【详解】(1)证明:连接,如下图所示,
∵是的平分线,∴,又∵,∴,∴,∴,∴,即,又∵过半径的外端点B,∴与相切;(2)解:设,则,∵在中,,,,∴,∵,∴,∴,即,解得.故的半径长为.24.(2023·江苏无锡·中考真题)如图,是的直径,与相交于点.过点的圆O的切线,交的延长线于点,.
(1)求的度数;(2)若,求的半径.
【答案】(1)(2)【分析】(1)连接,根据为的切线,则,由,则,根据圆周角定理可得,又,根据等边对等角以及三角形内角和定理即可求解;(2)证明,根据相似三角形的性质,代入数据即可求解.【详解】(1)如图,连接.
为的切线,.,.,.,.(2)如图,连接,,,.,,且,,,即,,,即半径为.37.(2021·江苏淮安·中考真题)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=,求⊙O的直径.【答案】(1)相切,理由见解析;(2)【分析】(1)连接DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切;(2)根据勾股定理和相似三角形的性质即可得到结论.【详解】解:(1)证明:连接DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切;(2)由(1)得,∠CDB=90°,∵CE=EB,∴DE=BC,∴BC=5,∴BD===4,∵∠BCA=∠BDC=90°,∠B=∠B,∴△BCA∽△BDC,∴=,∴=,∴AC=,∴⊙O直径的长为.38.(2021·江苏镇江·中考真题)如图1,正方形ABCD的边长为4,点P在边BC上,⊙O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 密集柜合同范本
- 五一劳动节安全指南五一劳动节安全教育宣教课件
- 商品租赁转让合同范本
- 室外装修安全合同范本
- 绩效考核与管理培训课件
- 2025租赁合同违约责任抗辩情况分析
- 2025照明项目合同范本
- 第16讲 全等三角形 2025年中考数学一轮复习讲练测(广东专用)
- 2025非本地居民房屋租赁合同模板
- 2025购销合同范本标准
- 智慧共享中药房建设与运行规范
- 东湖高新区2023-2024学年下学期期中七年级数学试题(含答案)
- 2025年中国信达资产管理股份有限公司招聘笔试参考题库含答案解析
- 《中医骨伤科学》课件- 外治法
- 统编版小学语文六年级下册第二单元快乐读书吧:《昆虫记》读中推进课课件(共19张)
- 医学会议准备流程
- 2025年上海新徐汇集团有限公司招聘笔试参考题库含答案解析
- 生物技术测试题+参考答案
- 大学英语(西安石油大学)知到智慧树章节测试课后答案2024年秋西安石油大学
- 《市域智慧共享中药房建设指南》
- 不稳定型心绞痛和非ST段抬高心肌梗死治疗指南解读
评论
0/150
提交评论