版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市澧县马溪中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等差数列{an}中,Sn为其前n项和,若a3=8,则S5=()A.16 B.24 C.32 D.40参考答案:D【考点】等差数列的前n项和.【分析】由题意和等差数列的求和公式以及性质可得S5=5a3,代值计算可得.【解答】解:∵等差数列{an}中,Sn为其前n项和,a3=8,∴S5===5a3=5×8=40故选:D2.已知:,直线和曲线有两个不同的交点,它们围成的平面区域为M,向区域上随机投一点A,点A落在区域M内的概率为,若,则实数的取值范围为(
)A.
B.
C.
D.参考答案:D略3.设随机变量,则(
)A. B. C. D.3参考答案:B【分析】根据二项分布方差公式求得结果.【详解】
本题正确选项:【点睛】本题考查二项分布中方差的求解,属于基础题.4.不等式的解集为A.B.C.
D.参考答案:B5.已知函数,则(
)A.0 B. C.-3 D.参考答案:D略6.已知等差数列的前n项和为等于(
)A.-90 B.-27 C.-25 D.0参考答案:C略7.已知数列{an}的前n项和为Sn,且Sn=2(an-1),则a2等于()A.4 B.2 C.1
D.-2参考答案:A略8.已知等差数列的公差d≠0,且成等比数列,则的值是(
)
A.
B.
C.
D.参考答案:C略9.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2﹣f(﹣x),当x∈(﹣∞,0)时,f′(x)+<4x,若f(m+1)≤f(﹣m)+4m+2,则实数m的取值范围是()A.[﹣,+∞) B.[﹣,+∞) C.[﹣1,+∞) D.[﹣2,+∞)参考答案:A【考点】利用导数研究函数的单调性.【分析】利用构造法设g(x)=f(x)﹣2x2,推出g(x)为奇函数,判断g(x)的单调性,然后推出不等式得到结果.【解答】解:∵f(x)=4x2﹣f(﹣x),∴f(x)﹣2x2+f(﹣x)﹣2x2=0,设g(x)=f(x)﹣2x2,则g(x)+g(﹣x)=0,∴函数g(x)为奇函数.∵x∈(﹣∞,0)时,f′(x)+<4x,g′(x)=f′(x)﹣4x<﹣,故函数g(x)在(﹣∞,0)上是减函数,故函数g(x)在(0,+∞)上也是减函数,若f(m+1)≤f(﹣m)+4m+2,则f(m+1)﹣2(m+1)2≤f(﹣m)﹣2m2,即g(m+1)<g(﹣m),∴m+1≥﹣m,解得:m≥﹣,故选:A.10.已知椭圆的离心率为,焦点是(-3,0),(3,0),则椭圆方程为
(
) A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.参考答案:(0,2)【考点】二元一次不等式(组)与平面区域.【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)?(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)?(1+1﹣a)<0,解得0<a<2,故答案为:(0,2).12.
用更相减损术求38与23的最大公约数为
参考答案:1
13.已知直线和夹角的平分线为y=,如果
的方程是
,那么
的方程是
.参考答案:14.在△ABC中,B=135°,C=15°,a=5,则此三角形的最小边长为
,外接圆的面积为
.参考答案:,25π.【考点】HP:正弦定理.【分析】根据题意,由A、C的大小可得B=75°,由三角形的角边关系分析可得c为最小边;进而由正弦定理=,变形可得c=,代入数据计算可得答案.【解答】解:根据题意,在△ABC中,B=135°,C=15°,则A=180°﹣135°﹣15°=30°,则有B>A>C,则c为最小边,由正弦定理可得:c===,外接圆的半径R===5,可得:外接圆的面积S=πR2=25π.故答案为:,25π.15.给出下列命题:①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l⊥α;③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是
.(把你认为正确命题的序号都填上)参考答案:①④【考点】平面的法向量.【专题】对应思想;综合法;空间向量及应用.【分析】①根据直线l、m的方向向量与垂直,得出l⊥m;②根据直线l的方向向量与平面α的法向量垂直,不能判断l⊥α;③根据平面α、β的法向量与不共线,不能得出α∥β;④求出向量与的坐标表示,再利用平面α的法向量,列出方程组求出u+t的值.【解答】解:对于①,∵=(1,﹣1,2),=(2,1,﹣),∴?=1×2﹣1×1+2×(﹣)=0,∴⊥,∴直线l与m垂直,①正确;对于②,=(0,1,﹣1),=(1,﹣1,﹣1),∴?=0×1+1×(﹣1)+(﹣1)×(﹣1)=0,∴⊥,∴l∥α或l?α,②错误;对于③,∵=(0,1,3),=(1,0,2),∴与不共线,∴α∥β不成立,③错误;对于④,∵点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),∴=(﹣1,1,1),=(﹣1,1,0),向量=(1,u,t)是平面α的法向量,∴,即;则u+t=1,④正确.综上,以上真命题的序号是①④.故答案为:①④.【点评】本题考查了空间向量的应用问题,也考查了直线的方向向量与平面的法向量的应用问题,是综合性题目.16.已知点在直线上,若圆(为坐标原点)上存在点使得,则的取值范围为▲.参考答案:略17.中,则=
▲
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本大题12分)已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.参考答案:19.已知函数,若从集合中任取一个元素,从集合中任取一个元素,代入中形成函数.(Ⅰ)试列出所有的与的组合;(Ⅱ)求方程有两个不相等实根的概率.参考答案:解:(Ⅰ)∵取集合中任一个元素,取集合{1,2,3}中任一个元素,∴,的取值的情况有(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3).其中第一个数表示的取值,第二个数表示的取值。………………4分(Ⅱ)设“方程f(x)=0有两个不相等的实根”为事件A,当a>0,b>0时,方程有两个不相等实根的充要条件为a>2b.当a>2b时,a,b取值的情况有(3,1),(4,1),(5,1),(5,2),即A包含的基本事件数为4,而基本事件总数为9.∴方程有两个不相等实根的概率………………12分略20.设和.参考答案:略21.已知数列{an}中,a1=1,(n∈N*). (1)求证:数列为等差数列; (2)求数列{an}的通项公式an; (3)设,数列{bnbn+2}的前n项和Tn,求证:. 参考答案:【考点】数列递推式;等差关系的确定;数列的求和. 【专题】综合题;等差数列与等比数列. 【分析】(1)由得,结合等差数列的定义可得结论; (2)由(1)及等差数列的通项公式可求得an; (3)由得,从而可得bnbn+2,拆项后利用裂项相消法可得Tn,易得结论; 【解答】证明:(1)由得:,且, ∴数列是以1为首项,以2为公差的等差数列; (2)由(1)得:, 故; (3)由得:, ∴, 从而:, 则Tn=b1b3+b2b4+…+bnbn+2 = = =. 【点评】本题考查由递推式求数列通项、等差关系的确定及数列求和,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握. 22.(12分)已知点F(1,0),直线l:x=﹣1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且.(1)求动点P的轨迹C的方程;(2)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知,,求λ1+λ2的值.参考答案:【考点】平面向量数量积的运算;轨迹方程;抛物线的定义;抛物线的简单性质.【分析】解法一:(1)我们可设出点P的坐标(x,y),由直线l:x=﹣1,过P作直线l的垂线,垂足为点Q,则Q(﹣1,y),则我们根据,构造出一个关于x,y的方程,化简后,即可得到所求曲线的方程;(2)由过点F的直线交轨迹C于A、B两点,交直线l于点M,我们可以设出直线的点斜式方程,联立直线方程后,利用设而不求的思想,结合一元二次方程根与系数关系,易求λ1+λ2的值.解法二:(1)由得,进而可得.根据抛物线的定义,我们易得动点的轨迹为抛物线,再由直线l(即准线)方程为:x=﹣1,易得抛物线方程;(2)由已知,,得λ1?λ2<0.根据抛物线的定义,可们可以将由已知,,转化为,进而求出λ1+λ2的值.【解答】解:法一:(Ⅰ)设点P(x,y),则Q(﹣1,y),由得:(x+1,0)?(2,﹣y)=(x﹣1,y)?(﹣2,y),化简得C:y2=4x.
(Ⅱ)设直线AB的方程为:x=my+1(m≠0).设A(x1,y1),B(x2,y2),又,联立方程组,消去x得:y2﹣4m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人经营性贷款还款协议模板8篇
- 二零二五年废弃物处理及废品回收承包合同书3篇
- 二零二五年度仓储租赁与智能化改造合同3篇
- 二零二五年度外资独资公司股权变更操作细则合同
- 2025年个人汽车维修服务质押担保合同3篇
- 2025版高端餐饮集团租赁管理与服务保障合同3篇
- 个人委托支付事务具体合同版B版
- 2024酒店装修设计合同
- 2025年度智能果园苹果采购与销售管理合同4篇
- 2025年度园林景观设计专利授权许可合同3篇
- 碳纤维增强复合材料在海洋工程中的应用情况
- 多重耐药菌病人的管理-(1)课件
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 环境监测对环境保护的意义
- 2023年数学竞赛AMC8试卷(含答案)
- 神经外科课件:神经外科急重症
- 2024年低压电工证理论考试题库及答案
- 2023年十天突破公务员面试
- 《疯狂动物城》中英文对照(全本台词)
- 医院住院医师规范化培训证明(样本)
- 小学六年级语文阅读理解100篇(及答案)
评论
0/150
提交评论