湖北省襄阳市襄州区龙王中学2023-2024学年九年级数学第一学期期末经典试题含解析_第1页
湖北省襄阳市襄州区龙王中学2023-2024学年九年级数学第一学期期末经典试题含解析_第2页
湖北省襄阳市襄州区龙王中学2023-2024学年九年级数学第一学期期末经典试题含解析_第3页
湖北省襄阳市襄州区龙王中学2023-2024学年九年级数学第一学期期末经典试题含解析_第4页
湖北省襄阳市襄州区龙王中学2023-2024学年九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省襄阳市襄州区龙王中学2023-2024学年九年级数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数图像的顶点坐标是()A. B. C. D.2.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为().A. B. C. D.3.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1:9,则OC:CF的值为()A.1:2 B.1:3 C.1:8 D.1:94.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有()A.12人 B.18人 C.9人 D.10人5.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为()A.向左平移个单位,向下平移个单位B.向左平移个单位,向上平移个单位C.向右平移个单位,向下平移个单位D.向右平移个单位,向上平移个单位6.两三角形的相似比是2:3,则其面积之比是()A.: B.2:3 C.4:9 D.8:277.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.∶3 B.∶1 C.∶ D.1∶8.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×59.下列汽车标志中,既是轴对称图形又是中心对称图形的是A. B. C. D.10.如图,在中,,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是()A.一定相似 B.一定全等 C.不一定相似 D.无法判断11.已知反比例函数,当x>0时,y随x的增大而增大,则k的取值范围是()A.k>0 B.k<0 C.k≥1 D.k≤112.如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=()A. B. C. D.二、填空题(每题4分,共24分)13.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为__.14.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角为__________.15.如图:M为反比例函数图象上一点,轴于A,时,______.16.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.17.二次函数y=4(x﹣3)2+7的图象的顶点坐标是_____.18.已知△ABC∽△A'B'C',S△ABC:S△A'B'C'=1:4,若AB=2,则A'B'的长为_____.三、解答题(共78分)19.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.20.(8分)在如图中,每个正方形有边长为1的小正方形组成:(1)观察图形,请填写下列表格:正方形边长

1

3

5

7

n(奇数)

黑色小正方形个数

正方形边长

2

4

6

8

n(偶数)

黑色小正方形个数

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.21.(8分)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.22.(10分)如图是测量河宽的示意图,与相交于点,,测得,,,求得河宽.23.(10分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=4,AC=1.(1)求CD的长;(2)求证:△ABE∽△ACB.24.(10分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;(3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.25.(12分)已知抛物线与轴交于点.(1)求点的坐标和该抛物线的顶点坐标;(2)若该抛物线与轴交于两点,求的面积;(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).26.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.该同学从5个项目中任选一个,恰好是田赛项目的概率为______;该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.

参考答案一、选择题(每题4分,共48分)1、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵,∴二次函数的顶点坐标为.

故选:D.【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.2、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】解①得,,解②得,.∴.∵的值是不等式组的解,∴.方程,解得,.∵不是方程的解,∴或.∴满足条件的的值为,(个).∴概率为.故选.3、A【分析】利用位似的性质和相似三角形的性质得到,然后利用比例性质求出即可.【详解】解:∵△ABC与△DEF位似,∴=,∴,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.4、C【解析】试题分析:设这个小组有人,故选C.考点:一元二次方程的应用.5、D【解析】二次函数y=x1+4x+3=(x+1)1-1,将其向右平移1个单位,再向上平移1个单位得到二次函数y=x1.故选D.点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.6、C【解析】根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵两三角形的相似比是2:3,∴其面积之比是4:9,故选C.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.7、A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【详解】解:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的周长比为:4R:6R=∶1.故选:A.【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.8、D【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可.【详解】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,

故选:D【点睛】找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.9、D【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.10、A【分析】根据已知条件可得出,,再结合三角形的内角和定理可得出,从而可判定两三角形一定相似.【详解】解:由已知条件可得,,∵,∴,∵,∴,继而可得出,∴.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.11、B【分析】根据反比例函数的性质,当x>0时,y随x的增大而增大得出k的取值范围即可.【详解】解:∵反比例函数中,当x>0时,y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查的是反比例函数的性质,反比例函数(k≠0)中,当k>0时,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大.12、B【分析】如图,连接OA,OB.设OA=OB=x.利用勾股定理构建方程求出x,再证明∠APB=∠AOD即可解决问题.【详解】如图,连接OA,OB.设OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,则有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故选:B.【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识.二、填空题(每题4分,共24分)13、【解析】试题解析:如图:连接OA交BC于D,连接OC,是等边三角形,是外心,故答案为14、120【分析】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.根据面积关系可得.【详解】设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R=3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故答案为:120°.【点睛】考核知识点:圆锥侧面积问题.熟记弧长和扇形面积公式是关键.15、﹣1.【分析】根据反比例函数系数的几何意义,由S△AOM=4,可可求出|k|=1,再由函数图像过二、四象限可知k<0,,从而可求出k的值.【详解】∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.16、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.17、(3,7)【分析】由抛物线解析式可求得答案.【详解】∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).18、1【分析】由相似三角形的面积比得到相似比,再根据AB即可求得A'B'的长.【详解】解:∵△ABC∽△A'B'C',且S△ABC:S△A'B''C'=1:1,∴AB:A′B′=1:2,∵AB=2,∴A′B′=1.故答案为1.【点睛】此题考查相似三角形的性质,相似三角形的面积的比等于相似比的平方.三、解答题(共78分)19、(1)证明见解析;(2)【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.20、(1)1,5,9,13,…,则(奇数)2n-1;4,8,12,16,…,则(偶数)2n(2)存在偶数n=12使得P2=5P1【解析】(1)此题找规律时,显然应分两种情况分析:当n是奇数时,黑色小正方形的个数是对应的奇数;当n是偶数时,黑色小正方形的个数是对应的偶数.(2)分别表示偶数时P1和P2的值,然后列方程求解,进行分析【详解】(1)1,5,9,13,…,则(奇数)2n−1;4,8,12,16,…,则(偶数)2n.(2)由上可知n为偶数时P1=2n,白色与黑色的总数为n2,∴P2=n2−2n,根据题意假设存在,则n2−2n=5×2n,n2−12n=0,解得n=12,n=0(不合题意舍去).故存在偶数n=12,使得P2=5P1.21、(1)y=x2﹣2x﹣3;(2)CP的长为3﹣或3﹣3;(3)a的值为1﹣或2+.【解析】(1)先根据题意得出点B的坐标,再利用待定系数法求解可得;

(2)分点P在点C上方和下方两种情况,先求出∠OBP的度数,再利用三角函数求出OP的长,从而得出答案;

(3)分对称轴x=1在a到a+1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得.【详解】(1)∵点A(﹣1,0)与点B关于直线x=1对称,∴点B的坐标为(3,0),代入y=x2+bx+c,得:,解得,所以二次函数的表达式为y=x2﹣2x﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OBtan∠OBP=3×=,∴CP=3﹣;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OBtan∠OBP′=3×=3,∴CP=3﹣3;综上,CP的长为3﹣或3﹣3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2+(负值舍去);综上,a的值为1﹣或2+.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.22、河宽的长为【分析】先证明,利用对应边成比例代入求值即可.【详解】在和中,,即河宽的长为.【点睛】本题考查相似三角形的性质与判定,关键在于熟悉基础知识.23、(1);(2)见解析【分析】(1)由线段的和差关系可求出CE的长,由AB//CD可证明△CDE∽△ABE,根据相似三角形的性质即可求出CD的长;(2)根据AB、AE、AC的长可得,由∠A为公共角,根据两组对应边成比例,且对应的夹角相等即可证明△ABE∽△ACB.【详解】(1)∵AE=4,AC=1∴CE=AC-AE=1-4=5∵AB∥CD,∴△CDE∽△ABE,∴,∴.(2)∵,∴∵∠A=∠A,∴△ABE∽△ACB【点睛】本题考查相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相似三角形的判定定理是解题关键.24、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得,解得∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论