![湖南省长沙市宁乡县第一高级中学2024年高三第三次模拟考试数学试卷含解析_第1页](http://file4.renrendoc.com/view12/M08/1D/04/wKhkGWX3c_GAKbC4AAHSXvR9g_w330.jpg)
![湖南省长沙市宁乡县第一高级中学2024年高三第三次模拟考试数学试卷含解析_第2页](http://file4.renrendoc.com/view12/M08/1D/04/wKhkGWX3c_GAKbC4AAHSXvR9g_w3302.jpg)
![湖南省长沙市宁乡县第一高级中学2024年高三第三次模拟考试数学试卷含解析_第3页](http://file4.renrendoc.com/view12/M08/1D/04/wKhkGWX3c_GAKbC4AAHSXvR9g_w3303.jpg)
![湖南省长沙市宁乡县第一高级中学2024年高三第三次模拟考试数学试卷含解析_第4页](http://file4.renrendoc.com/view12/M08/1D/04/wKhkGWX3c_GAKbC4AAHSXvR9g_w3304.jpg)
![湖南省长沙市宁乡县第一高级中学2024年高三第三次模拟考试数学试卷含解析_第5页](http://file4.renrendoc.com/view12/M08/1D/04/wKhkGWX3c_GAKbC4AAHSXvR9g_w3305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市宁乡县第一高级中学2024年高三第三次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图像大致为()A. B.C. D.2.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关3.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.4.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A. B. C. D.5.设,,,则、、的大小关系为()A. B. C. D.6.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.7.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.38.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.9.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)10.已知集合,定义集合,则等于()A. B.C. D.11.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.12.的展开式中的项的系数为()A.120 B.80 C.60 D.40二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则_____________.14.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.15.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.16.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.18.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82819.(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.20.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.21.(12分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.22.(10分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.2、B【解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.3、D【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.4、D【解析】
如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,,,.在和中,由余弦定理得,整理解得.故选D.5、D【解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.6、D【解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.7、A【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.8、C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.9、B【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。10、C【解析】
根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.11、C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.12、A【解析】
化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由集合和集合求出交集即可.【详解】解:集合,,.故答案为:.【点睛】本题考查了交集及其运算,属于基础题.14、【解析】
设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线x-y=0的对称点Q(y0,x0),则,故只需圆x2+(y-1)2=r2与圆(x-1)2+(y-2)2=1有交点即可,所以|r-1|≤≤r+1,解得.故答案为:【点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.15、【解析】
根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.【详解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②①②联解,得,可得,∴双曲线的,结合,得离心率.故答案为:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.16、【解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是,【解析】
(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值.【详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为;(2)由(1)得,作出示意图,设切点为,则,同理即,所以,又,则的周长,所以周长为定值.【点睛】标准方程的求解,椭圆中的定值问题,考查焦半径公式的运用,考查逻辑推理能力和运算求解能力,难度较难.18、(1)列联表见解析,99%;(2),;(3)第二种优惠方案更划算.【解析】
(1)根据已知数据得出列联表,再根据独立性检验得出结论;(2)有数据可知,女性中“手机支付族”的概率为,知服从二项分布,即,可求得其期望和方差;(3)若选方案一,则需付款元,若选方案二,设实际付款元,,则的取值为1200,1080,1020,求出实际付款的期望,再比较两个方案中的付款的金额的大小,可得出选择的方案.【详解】(1)由已知得出联列表:,所以,有99%的把握认为“手机支付族”与“性别”有关;(2)有数据可知,女性中“手机支付族”的概率为,,;(3)若选方案一,则需付款元若选方案二,设实际付款元,,则的取值为1200,1080,1020,,,,选择第二种优惠方案更划算【点睛】本题考查独立性检验,二项分布的期望和方差,以及由期望值确定决策方案,属于中档题.19、(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得.当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理在区间内存在零点.∴在区间内恰有两个零点.由(1)易知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单凋递减,在区间上单调递增.记的两个零点为,∴,必有.由,得.∴又∵,∴.综上所述,实数的取值范围为.【点睛】本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.20、(1)见解析;(2)见解析.【解析】分析:(1)先证明,再证明FG//平面PBD.(2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,,又平面,平面,所以平面(II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG.点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几何法和向量法,本题利用几何法比较方便.21、(1)(2)当G点横坐标为整数时,S不是整数.【解析】
(1)先求解导数,得出切线方程,联立方程得出交点G的轨迹方程;(2)先求解弦长,再分别求解点到直线的距离,表示出四边形的面积,结合点G的横坐标为整数进行判断.【详解】(1)设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为;(2)设点G(,),由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下导辊轴承座项目可行性研究报告
- 2025至2030年5-氯-24-二磺酰项目投资价值分析报告
- 基于场所依恋的老旧社区公共活动空间更新策略研究
- 2025至2030年铸花楼梯项目投资价值分析报告
- 铁路应答器上行链路信号解调研究及FPGA实现
- 2025至2030年童鸽项目投资价值分析报告
- 巴基斯坦东部盐岭下寒武统Khewra砂岩的沉积和成岩演化
- 选区激光熔化成形医用Ni@Al2O3-CoCrMo复合材料组织性能及生物相容性研究
- 2025至2030年斯太尔驱动前桥项目投资价值分析报告
- 石首市农村一二三产业融合发展研究
- 移动取消宽带委托书
- 国际市场营销(高职)教学教案
- 消防设施维保服务投标方案
- 图图身体部位-课件
- 《社区康复》课件-第九章 言语障碍患者的社区康复实践
- 万千教育学前让幼儿都爱学习:幼儿园高质量学习活动设计与组织
- 亲历电子病历系统分级评价四级参评纪实-2022医院信息化
- 情景交际-2022年中考英语真题汇编(全国通用)
- 国家安全生态安全教育课件
- 《医药板块分析》课件
- 人教版(新起点) 小学英语五年级下册教案(全册)
评论
0/150
提交评论