下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.1平面向量的概念【题型归纳目录】【思维导图】【知识点梳理】知识点一:向量的概念1、向量:既有大小又有方向的量叫做向量.2、数量:只有大小,没有方向的量(如年龄、身高、长度、面积、体积和质量等),称为数量.知识点诠释:(1)本书所学向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移.(2)看一个量是否为向量,就要看它是否具备了大小和方向两个要素.(3)向量与数量的区别:数量与数量之间可以比较大小,而向量与向量之间不能比较大小.知识点二:向量的表示法1、有向线段:具有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量的表示方法:(1)字母表示法:如等.(2)几何表示法:以A为始点,B为终点作有向线段(注意始点一定要写在终点的前面).如果用一条有向线段表示向量,通常我们就说向量. 知识点诠释:(1)用字母表示向量便于向量运算;(2)用有向线段来表示向量,显示了图形的直观性.应该注意的是有向线段是向量的表示,不是说向量就是有向线段.由于向量只含有大小和方向两个要素,用有向线段表示向量时,与它的始点的位置无关,即同向且等长的有向线段表示同一向量或相等的向量.知识点三:向量的有关概念1、向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度).知识点诠释:(1)向量的模.(2)向量不能比较大小,但是实数,可以比较大小.2、零向量:长度为零的向量叫零向量.记作,它的方向是任意的.3、单位向量:长度等于1个单位的向量.知识点诠释:(1)在画单位向量时,长度1可以根据需要任意设定;(2)将一个向量除以它的模,得到的向量就是一个单位向量,并且它的方向与该向量相同.(3)相等向量:长度相等且方向相同的向量.知识点诠释:在平面内,相等的向量有无数多个,它们的方向相同且长度相等.知识点四:向量的共线或平行方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量).规定:与任一向量共线.知识点诠释:1、零向量的方向是任意的,注意与0的含义与书写区别.2、平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.3、共线向量与相等向量的关系:相等向量一定是共线向量,但共线向量不一定是相等的向量.【典型例题】题型一:向量的基本概念【例1】(2024·全国·高一假期作业)下列量中是向量的为(
)A.频率 B.拉力 C.体积 D.距离【变式11】(2024·安徽阜阳·高二校考阶段练习)下列命题中错误的有(
)A.平行向量就是共线向量B.相反向量就是长度相等且方向相反的向量C.同向,且,则D.两个向量平行是这两个向量相等的必要不充分条件【变式12】(2023·广东湛江·高二校考开学考试)下列命题正确的个数是(
)(1)向量就是有向线段;(2)零向量是没有方向的向量;(3)零向量的方向是任意的;(4)零向量的长度为0.A.1 B.2 C.3 D.4【变式13】(2024·河南濮阳·高一濮阳一高校考阶段练习)判断下列命题:①两个有共同起点而且相等的非零向量,其终点必相同;②若,则与的方向相同或相反;③若,且,则.其中,正确的命题个数为(
)A.0 B.1 C.2 D.3【变式14】(2024·高一课时练习)给出下列命题:①两个具有公共终点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③若(λ为实数),则λ必为零;④已知λ,μ为实数,若,则与共线.其中错误命题的个数为(
)A.1 B.2 C.3 D.4【方法技巧与总结】解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题.题型二:向量的表示方法【例2】(2024·全国·高一随堂练习)用有向线段表示下列物体运动的速度.(1)向正东方向匀速行驶的汽车在2h内的位移是60km(用的比例尺);(2)做自由落体运动的物体在1s末的速度(用1cm的长度表示速度2m/s).【变式21】(2024·全国·高一随堂练习)用有向线段分别表示一个方向向上、大小为20N的力,以及一个方向向下、大小为30N的力(用1cm的长度表示大小为10N的力).【变式22】(2024·全国·高一随堂练习)选择适当的比例尺,用有向线段表示下列向量.(1)终点A在起点O正东方向3m处;(2)终点B在起点O正西方向3m处;(3)终点C在起点O东北方向4m处;(4)终点D在起点O西南方向2m处.【方法技巧与总结】作向量的方法:准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.题型三:利用向量相等或共线进行证明【例3】(2024·高一课时练习)如图,和是在各边的三等分点处相交的两个全等的正三角形,设的边长为a,写出图中给出的长度为的所有向量中,(1)与向量相等的向量;(2)与向量共线的向量;(3)与向量平行的向量.【变式31】(2024·全国·高一课堂例题)如图,D,E分别为的边AB,AC的中点,求证:与共线,并用表示.【变式32】(2024·全国·高一课堂例题)已知O为正六边形的中心,在图所标出的向量中:(1)试找出与共线的向量;(2)确定与相等的向量;(3)与相等吗?【变式33】(2024·高一课时练习)如图所示,在平行四边形中,,分别是,的中点.(1)写出与向量共线的向量;(2)求证:.【方法技巧与总结】相等向量与共线向量的探求方法(1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.(2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.题型四:向量知识在实际问题中的简单应用【例4】(2024·高一课时练习)一辆汽车从以点出发向西行驶了到达B点,然后向西偏北的方向行驶了到达C点,最后向东行驶了到达D点.(1)作出向量;(2)求.【变式41】(2024·全国·高一随堂练习)如图,某船从点O出发沿北偏东30°的方向行驶至点A处,求该船航行向量的长度(单位:nmile).【变式42】(2024·高一课时练习)已知飞机从地按北偏东方向飞行到达地,再从地按南偏东方向飞行到达地,再从地按西南方向飞行到达地.画图表示向量,并指出向量的模和方向.【变式43】(2024·高一课时练习)飞机从A地按北偏西15°的方向飞行到达B地,再从B地按南偏东75°的方向飞行到达C地,那么C地在A地什么方向上?C地距A地多远?【变式44】(2024·高一课时练习)一名模型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度婚庆床品产业分析报告
- 无人驾驶技术对运输的影响
- 2025版新能源汽车推广使用合同范本一4篇
- 二零二五年度民政局离婚协议书2025版范本案例分享4篇
- 二零二五版办公车辆租赁与车辆保养维修合同2篇
- 2024年09月江苏苏州银行总行大数据管理部招考(114)号笔试历年参考题库附带答案详解
- 2025年度硫酸生产项目环境影响评价合同4篇
- 2024年09月上海2024年浦发银行总行金融市场部校园招考笔试历年参考题库附带答案详解
- 加油站的油价政策解读
- 2025年数字经济园区场地租赁及数字基础设施建设合同3篇
- 物业民法典知识培训课件
- 2023年初中毕业生信息技术中考知识点详解
- 2024-2025学年山东省德州市高中五校高二上学期期中考试地理试题(解析版)
- 《万方数据资源介绍》课件
- 麻风病病情分析
- 《急诊科建设与设备配置标准》
- 第一章-地震工程学概论
- JJF(陕) 063-2021 漆膜冲击器校准规范
- 《中国糖尿病防治指南(2024版)》更新要点解读
- TSGD7002-2023-压力管道元件型式试验规则
- 2024年度家庭医生签约服务培训课件
评论
0/150
提交评论