华中师大一附中2024年高考数学四模试卷含解析_第1页
华中师大一附中2024年高考数学四模试卷含解析_第2页
华中师大一附中2024年高考数学四模试卷含解析_第3页
华中师大一附中2024年高考数学四模试卷含解析_第4页
华中师大一附中2024年高考数学四模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华中师大一附中2024年高考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.2.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c3.函数的图像大致为()A. B.C. D.4.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.5.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A. B. C. D.6.已知函数在区间有三个零点,,,且,若,则的最小正周期为()A. B. C. D.7.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.8.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.9.已知集合,则等于()A. B. C. D.10.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离11.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.12.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上到其焦点的距离为的点的个数为________.14.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.15.已知,满足约束条件则的最小值为__________.16.命题“”的否定是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.18.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:②每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:①;②若;则,,.19.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.20.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.21.(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,(Ⅰ)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(Ⅱ)商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)(ⅰ)求的分布列;(ⅱ)若,求的数学期望的最大值.22.(10分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.2、A【解析】

利用指数函数、对数函数的单调性直接求解.【详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.3、A【解析】

根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.4、B【解析】

为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.5、B【解析】命题p:,为,又为真命题的充分不必要条件为,故6、C【解析】

根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,,,当时,,∴由对称轴可知,满足,即.同理,满足,即,∴,,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.7、C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.8、D【解析】

由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.9、C【解析】

先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.10、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r11、C【解析】

根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.12、B【解析】

连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设抛物线上任意一点的坐标为,根据抛物线的定义求得,并求出对应的,即可得出结果.【详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,抛物线上到其焦点的距离为的点的个数为.故答案为:.【点睛】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.14、【解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.15、【解析】

画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.16、,【解析】

根据特称命题的否定为全称命题得到结果即可.【详解】解:因为特称命题的否定是全称命题,所以,命题,则该命题的否定是:,故答案为:,.【点睛】本题考查全称命题与特称命题的否定关系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)点M的极坐标为或(2)【解析】

(1)令,由此求得的值,进而求得点的极坐标.(2)设出两点的极坐标,利用勾股定理求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设点M在极坐标系中的坐标,由,得,∵∴或,所以点M的极坐标为或(2)由题意可设,.由,得,.故时,的最大值为.【点睛】本小题主要考查极坐标的求法,考查极坐标下两点间距离的计算以及距离最值的求法,属于中档题.18、(1);(2)估计此次活动可能赠送出100000元话费【解析】

(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次活动可能赠送出100000元话费.【点睛】本题考查正态分布、离散型随机变量的分布列及数学期望,注意与正态分布有关的计算要利用该分布的密度函数图象的对称性来进行,本题属于中档题.19、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】

(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据正弦定理先求得边c,然后由余弦定理可求得边b;(Ⅱ)结合二倍角公式及和差公式,即可求得本题答案.【详解】(Ⅰ)因为,由正弦定理可得,,又,所以,所以根据余弦定理得,,解得,;(Ⅱ)因为,所以,,,则.【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.21、(Ⅰ)0.288(Ⅱ)(ⅰ)见解析(ⅱ)数学期望的最大值为280【解析】

(Ⅰ)根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;(Ⅱ)(ⅰ)依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;(ⅱ)由题意知,,解得,根据的分布列,得出的数学期望,结合,即可算出的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论