江苏省南京市新城中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题含解析_第1页
江苏省南京市新城中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题含解析_第2页
江苏省南京市新城中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题含解析_第3页
江苏省南京市新城中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题含解析_第4页
江苏省南京市新城中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市新城中学2023-2024学年数学九年级第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.2.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是()A. B.C. D.4.如图,的半径为2,弦,点P为优弧AB上一动点,,交直线PB于点C,则的最大面积是

A. B.1 C.2 D.5.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸6.有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A.1 B.1 C. D.7.关于的一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.不能确定8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C. D.9.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件10.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠311.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a的值是()A.2 B.﹣2 C.±2 D.±412.在下面的计算程序中,若输入的值为1,则输出结果为().A.2 B.6 C.42 D.12二、填空题(每题4分,共24分)13.如图,在中,,于点,,,则_________;14.小明制作了一张如图所示的贺卡.贺卡的宽为,长为,左侧图片的长比宽多.若,则右侧留言部分的最大面积为_________.15.为解决群众看病难的问题,一种药品连续两次降价,每盒价格由原来的60元降至48.6元.若平均每次降价的百分率是x,则关于x的方程是________

.16.若方程x2+2x-11=0的两根分别为m、n,则mn(m+n)=______.17.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)

18.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_____.(结果保留π).三、解答题(共78分)19.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.20.(8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.21.(8分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).22.(10分)已知关于的方程,其中是常数.请用配方法解这个一元二次方程.23.(10分)黄山景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件.物价部门规定:销售单价不低于元,但不能超过元,设该纪念品的销售单价为(元),日销量为(件).(1)直接写出与的函数关系式.(2)求日销售利润(元)与销售单价(元)的函数关系式.并求当为何值时,日销售利润最大,最大利润是多少?24.(10分)AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.(1)求证:CE是⊙O的切线;(2)若BC=BE,判定四边形OBCD的形状,并说明理由.25.(12分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)26.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.

参考答案一、选择题(每题4分,共48分)1、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,

∴∠AEB=∠AFD=90°,

∵AD∥CB,AB∥CD,

∴四边形ABCD是平行四边形,

∵纸条宽度都为1,

∴AE=AF=1,

在△ABE和△ADF中,

∴△ABE≌△ADF(AAS),

∴AB=AD,

∴四边形ABCD是菱形.

∴BC=AB,

∵=sinα,

∴BC=AB=,

∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.

故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.2、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.3、D【解析】画树状图展示所有16种等可能的结果数,找出两次抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为10,所以两次抽取的卡片上数字之和为偶数的概率.故选D.【点睛】本题考查了列表法与树状图法.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4、B【分析】连接OA、OB,如图1,由可判断为等边三角形,则,根据圆周角定理得,由于,所以,因为,则要使的最大面积,点C到AB的距离要最大;由,可根据圆周角定理判断点C在上,如图2,于是当点C在半圆的中点时,点C到AB的距离最大,此时为等腰直角三角形,从而得到的最大面积.【详解】解:连接OA、OB,如图1,,,为等边三角形,,,,要使的最大面积,则点C到AB的距离最大,作的外接圆D,如图2,连接CD,,点C在上,AB是的直径,当点C半圆的中点时,点C到AB的距离最大,此时等腰直角三角形,,,ABCD,的最大面积为1.故选B.【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.5、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.6、B【分析】利用折叠的性质,即可求得BD的长与图3中AB的长,又由相似三角形的对应边成比例,即可求得BF的长,则由CF=BC﹣BF即可求得答案.【详解】解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B.【点睛】此题考查了折叠的性质与相似三角形的判定与性质.题目难度不大,注意数形结合思想的应用.7、A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.8、A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则,即,解得A′D=2或A′D=-(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.9、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.10、D【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件可得关于x的不等式组,解不等式组即可.【详解】由题意,要使在实数范围内有意义,必须且x≠3,故选D.11、C【分析】把x=4代入原方程得关于a的一元一次方程,从而得解.【详解】把x=4代入方程可得16-12=,解得a=±2,故选C.考点:一元二次方程的根.12、C【分析】根据程序框图,计算,直至计算结果大于等于10即可.【详解】当时,,继续运行程序,当时,,继续运行程序,当时,,输出结果为42,故选C.【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,

∴AC:CD=CB:BD,即AC:=3:2,∴AC=.

故答案为:.【点睛】本题考查相似三角形的判定和性质、勾股定理.14、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积又14≤x≤16∴当x=16时,面积最大(故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.15、10(1﹣x)2=48.1.【解析】试题分析:本题可先列出第一次降价后药品每盒价格的代数式,再根据第一次的价格列出第二次降价的售价的代数式,然后令它等于48.1即可列出方程.解:第一次降价后每盒价格为10(1﹣x),则第二次降价后每盒价格为10(1﹣x)(1﹣x)=10(1﹣x)2=48.1,即10(1﹣x)2=48.1.故答案为10(1﹣x)2=48.1.考点:由实际问题抽象出一元二次方程.16、22【分析】

【详解】∵方程x2+2x-11=0的两根分别为m、n,∴m+n=-2,mn=-11,∴mn(m+n)=(-11)×(-2)=22.故答案是:2217、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.18、2π.【分析】由题意根据阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积,分别求得:扇形BAB′的面积和S△AB′C′,S△ABC以及扇形CAC′的面积,进而分析即可求解.【详解】解:扇形BAB′的面积是:,在直角△ABC中,,.扇形CAC′的面积是:,则阴影部分的面积是:扇形BAB′的面积+-扇形CAC′的面积=.故答案为:2π.【点睛】本题考查扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB′的面积+-扇形CAC′的面积是解题的关键.三、解答题(共78分)19、(1)4米;(2)(14+4)米.【分析】(1)作EH⊥OB于H,由四边形MOHE是矩形,解Rt求得EH即可;(2)设ON=OD=m,作AK⊥ON于K,则四边形AKOB是矩形,,OK=AB=2,想办法构建方程求得m即可.【详解】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,在Rt中,∵∠EHF=90°,EF=4,∠EFH=45°,∴EH=FH=OM=米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,如图,AK=BO,OK=AB=2∵AB∥OD,∴,∴,∴OC=,∴,在Rt△AKN中,∵∠1=60°,∴AK,∴,∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点睛】本题考查了解直角三角形的应用,轴对称的性质,解题的关键是添加常用辅助线,构造直角三角形解决问题,学会用参数解决几何问题.20、(1)30人;(2).【解析】试题分析:(1)先由三等奖求出总人数,再求出一等奖人数所占的比例,即可得到获得一等奖的学生人数;(2)用列表法求出概率.试题解析:(1)由图可知三等奖占总的25%,总人数为人,一等奖占,所以,一等奖的学生为人;(2)列表:从表中我们可以看到总的有12种情况,而AB分到一组的情况有2种,故总的情况为.考点:1.扇形统计图;2.列表法与树状图法.21、(1)54人,画图见解析;(2)160名.【分析】(1)根据喜欢“分组合作学习”方式的圆心角度数和频数可求总数,从而得出非常喜欢“分组合作学习”方式的人数,补全条形图.(2)利用扇形图得出支持“分组合作学习”方式所占的百分比,利用样本估计总体即可.【详解】解:(1)∵喜欢“分组合作学习”方式的圆心角度数为120°,频数为18,∴本次被调查的八年级学生的人数为:18÷=54(人).∴非常喜欢“分组合作学习”方式的人数为:54﹣18﹣6=30(人),如图补全条形图:(2)∵“非常喜欢”和“喜欢”两种情况在扇形统计图中所占圆心角为:120°+200°=320°,∴支持“分组合作学习”方式所占百分比为:×100%,∴该校八年级学生共180人中,估计有180×=160名支持“分组合作学习”方式.22、详见解析.【分析】根据配方法可得,,再将p分为三种情况即可求出答案.【详解】,.当时,方程有两个不相等的实数根,;当时,方程有两个相等的实数根;当时,方程无实数根.【点睛】本题考查了解一元二次方程—配方法,熟练掌握这种方法是本题解题的关键.23、(1);(2),x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故与的函数关系式为;(2)根据题意得,当时,随的增大而增大,当时,,答:当为时,日销售利润最大,最大利润元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.24、(1)证明见解析;(2)四边形OBCD是菱形,理由见解析.【分析】(1)证明∠OCE=90°问题可解;(2)由同角的余角相等,可得∠BCO=∠BOC,再得到△BCO是等边三角形,故∠AOC=120°,再由垂径定理得到AF=CF,推出△COD是等边三角形问题可解.【详解】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OC=OA,∴∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:四边形OBCD是菱形,理由:∵BC=BE,∴∠E=∠ECB,∵∠BCO+∠BCE=∠COB+∠E=90°,∴∠BCO=∠BOC,∴BC=OB,∴△BCO是等边三角形,∴∠AOC=120°,∵F是AC的中点,∴AF=CF,∵OA=OC,∴∠AOD=∠COD=60°,∵OD=OC,∴△COD是等边三角形,∴CD=OD=OB=BC,∴四边形OBCD是菱形.【点睛】本题考查了切线的判定,菱形的判定,垂径定理,等边三角形的判定和性质,解答关键是根据题意找出并证明题目中的等边三角形.25、(1)①见解析,②见解析,点C2的坐标为(-3,1);(2)(-n,m)【分析】(1)①根据关于原点对称的点的坐标特征得到A1、B1、C1的坐标,然后描点即可;

②利用网格特点和旋转的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论