版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市大顺中学2022年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.△ABC的三内角A,B,C的对边分别为a,b,c,若,A=2B,则cosB=A.
B.
C.
D.参考答案:B2.等差数列中,,则(
)A.10
B.20
C.40
D.60参考答案:A略3.下列说法错误的是(
)A.若命题,则B.命题“若,则”的否命题是:“若,则”C.“”是“”的充分不必要条件D.若命题“”与命题“或”都是真命题,那么命题一定是真命题参考答案:C略4.已知,则、、的大小顺序是:
.(请用不等号“”把三个数连接起来)参考答案:略5.对于直线l:3x﹣y+6=0的截距,下列说法正确的是()A.在y轴上的截距是6 B.在x轴上的截距是2C.在x轴上的截距是3 D.在y轴上的截距是﹣6参考答案:A【考点】直线的截距式方程.【分析】分别令x=0、y=0代入直线的方程,求出直线在坐标轴上的截距.【解答】解:由题意得,直线l的方程为:3x﹣y+6=0,令x=0得y=6;令y=0得x=﹣2,所以在y轴上的截距是6,在x轴上的截距是﹣2,故选:A.6.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是(
)A.甲的极差是29 B.甲的中位数是24C.甲罚球命中率比乙高 D.乙的众数是21参考答案:B【分析】通过茎叶图找出甲的最大值及最小值求出极差判断出A对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D错;根据图的数据分布,判断出甲的平均值比乙的平均值大,判断出C对.【详解】由茎叶图知甲的最大值为37,最小值为8,所以甲的极差为29,故A对甲中间的两个数为22,24,所以甲的中位数为故B不对甲的命中个数集中在20而乙的命中个数集中在10和20,所以甲的平均数大,故C对乙的数据中出现次数最多的是21,所以D对故选:B.【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.7.已知集合,,,则的关系
(
)
A.
B.
C.
D.参考答案:B略8.的展开式的常数项是(
)A.15 B.-15 C.17 D.-17参考答案:C的展开式的通项公式:,分别令r?6=0,r?6=?2,解得r=6,r=4.∴的展开式的常数项是2×+1×=17.故选:C.点睛:二项展开式求常数项问题主要是利用好通项公式,在进行分类组合很容易解决,注意系数的正负.9.在△ABC中,若a=2,b=2,A=30°,则B为()A.60° B.60°或120° C.30° D.30°或150°参考答案:B【考点】正弦定理.【分析】利用正弦定理和题设中两边和一个角的值求得B.【解答】解:由正弦定理可知=,∴sinB==∵B∈(0,180°)∴∠B=60°或120°°故选B.10.过双曲线的一个焦点作直线交双曲线于A、B两点,若|AB|=4,则这样的直线有()A.4条 B.3条 C.2条 D.1条参考答案:B【考点】双曲线的简单性质.【分析】当直线与双曲线左右各有一个交点时,弦长|AB|最小为实轴长2a=2,若|AB|=4,则这样的直线l有且仅有两条,当直线l与双曲线的一支有两个交点时,弦长|AB|最小为通径长=4,若|AB|=4,则这样的直线l有且仅有1条,数形结合即可.【解答】解:如图:当直线l与双曲线左右各有一个交点时,弦长|AB|最小为实轴长2a=2,当直线l与双曲线的一支有两个交点时,弦长|AB|最小为通径长=4根据双曲线的对称性可知,若|AB|=4,则当直线与双曲线左右各有一个交点时,这样的直线可有两条,当直线与双曲线的一支有两个交点时,这样的直线只有1条,所以若|AB|=4,则这样的直线有且仅有3条,故选:B二、填空题:本大题共7小题,每小题4分,共28分11.函数在(1,2)内有最小值,则的取值范围是______参考答案:略12.已知向量夹角为
,且;则参考答案:13.直线,当变动时,所有直线都通过定点
.参考答案:(3,1)略14.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是
.参考答案:“若a2+b2+c2≥3,则a+b+c=3”【考点】四种命题间的逆否关系.【专题】对应思想;定义法;简易逻辑.【分析】根据命题“若p,则q”的逆命题是“若q,则p”,写出逆命题即可.【解答】解:命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是:“若a2+b2+c2≥3,则a+b+c=3”.故答案为:“若a2+b2+c2≥3,则a+b+c=3”.【点评】本题考查了命题与它的逆命题的应用问题,是基础题目.15.已知正项等比数列{an}满足a7=a6+2a5.若存在两项am,an使得=4a1,则+的最小值为.参考答案:【考点】7F:基本不等式;88:等比数列的通项公式.【分析】由a7=a6+2a5求出公比q,正项等比数列=4a1可得an?am=16a1,利用等比中项的性质可得m,n的关系,“乘1法”与基本不等式的性质,即可求+的最小值.【解答】解:由{an}是正项等比数列,a7=a6+2a5,可得:q2=q+2,解得:q=2或a=﹣1(舍去)∵=4a1∴可得:an?am=16a1=.∴m+n=6.则,那么:(+)()=+=当且仅当3m=n时取等号.故得+的最小值为:.16.如图所示,函数的图象在点处的切线方程是,
则_____.参考答案:17.椭圆7x2+3y2=21上一点到两个焦点的距离之和为.参考答案:2【考点】椭圆的简单性质.【分析】将椭圆方程转化成标准方程,求得a,b的值,由椭圆的定义可知:椭圆上一点到两个焦点的距离之和2a=2.【解答】解:由题意可知:椭圆的标准方程:,焦点在y轴上,a2=7,b2=3,由c2=a2﹣b2=4,c=2,∴由椭圆的定义可知:椭圆上一点到两个焦点的距离之和2a=2,故答案为:2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等差数列{an}中,a3=9,a8=29.(1)求数列{an}的通项公式及前n项和Sn的表达式;(2)记数列{}的前n项和为Tn,求Tn的值.参考答案:【考点】数列的求和;数列递推式.【分析】(1)由已知条件利用等差数列的通项公式求出首项与公差,由此能求出数列{an}的通项公式及前n项和Sn的表达式.(2)此利用裂项求和法能求出Tn的值【解答】解:(1)∵等差数列{an}中,a3=9,a8=29,∴,解得a1=1,d=4,∴an=1+(n﹣1)×4=4n﹣3.Sn=n+×4=2n2﹣n.(2)由(1)得,∴Tn=(1﹣+﹣+…+﹣)=(1﹣)=.【点评】本题考查数列的通项公式和前n项和公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.19.已知函数f(x)=x﹣lnx﹣1.(Ⅰ)求函数f(x)在x=2处的切线方程;(Ⅱ)若x∈(0,+∞)时,f(x)≥ax﹣2恒成立,求实数a的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求切线方程,关键是求斜率,也就是求f(x)在x=2时的导数,然后利用点斜式,问题得以解决;(Ⅱ)求参数的取值范围,转化为,也就是求最值的问题,问题得以解决.【解答】解:(Ⅰ)由题意得,,∴,f(2)=1﹣ln2,∴函数f(x)在x=2处的切线方程为:y﹣(1﹣ln2)=(x﹣2)即x﹣2y﹣ln4=0(Ⅱ)当x∈(0,+∞)时,f(x)≥ax﹣2恒成立,∴,令,则g′(x)=,即x=e2,可得g(x)在(0,e2)上单调递减,在(e2,+∞)上单调递增,∴,即故实数a的取值范围是.【点评】本题综合考察函数的单调性、导数的应用以及恒成立问题,中等题.20.已知,求证:参考答案:证明:要证>,只需证>∵>0∴两边均大于0
∴只需证>,即证,即证即证显然成立
∴原不等式成立略21.(13分)如图,在正方体A1B1C1D1﹣ABCD中,(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)(2)证明:AC∥平面A1BC1;(3)证明:AC⊥平面BDD1B1.参考答案:【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(1)画出正方体ABCD﹣A1B1C1D1,根据异面直线的概念即可找出与棱AA1异面的棱.(2)连接AC,A1C1,则A1C1∥AC,利用线面平行的判定定理即可证明;(3)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1.【解答】解:(1)与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.(2)证明:连接AC,A1C1,则A1C1∥AC,∵AC?平面A1BC1,A1C1?平面A1BC1,∴AC∥平面A1BC1;(3)证明:∵DD1⊥面AC,AC?平面AC,∴DD1⊥AC,∵AC⊥BD,DD1∩BD=D,BD?平面BDD1B1,DD1?平面BDD1B1∴AC⊥平面BDD1B1.【点评】考查异面直线的概念,直线与平面垂直的证明,直线与平面平行的判定,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.22.(本小题满分12分)有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:abcdefghijklm12345678910111213nopqrstuvwxyz14151617181920212223242526给出如下变换公式:
(x∈N,1≤x≤26,x不能被2整除)
+13(x∈N,1≤x≤26,x能被2整除)
将明文转换成密文,如8→+13=17,即h变成q;如5→=3,即e变成c.①按上述规定,将明文good译成的密文是什么?②按上述规定,若将某明文译成的密文是shxc,那么原来的明文是什么?
参考答案:
解:①g→7→=4→d;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学题库附答案(典型题)
- 2024年度山西省高校教师资格证之高等教育法规能力检测试卷A卷附答案
- 2024年度年福建省高校教师资格证之高等教育学考前自测题及答案
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 北京版英语小学五年级上学期期末试题与参考答案(2024年)
- 2024年股东专项资金垫付协议样本
- 2024年市场代销业务协议参考样本
- 2024煤矿作业综合运营承包协议
- 2024年规范化药品招标协议范例
- 2024装修项目订金协议范书
- 各省中国铁路限公司2024招聘(目前38183人)高频难、易错点500题模拟试题附带答案详解
- 杭州本级公共租赁住房资格续审申请表Ⅴ
- 建筑垃圾外运施工方案
- 上海市青浦区上海五浦汇实验学校 2024-2025学年上学期六年级数学期中试卷(无答案)
- 大学实训室虚拟仿真平台网络VR实训室方案(建筑学科)
- 2024二十届三中全会知识竞赛题库及答案
- 消化系统常见疾病课件(完美版)
- 医院检验外包服务项目招标文件
- 档案整理及数字化服务方案
- 枸杞多糖的提取与分离
- 机构编制重要法规文件汇编
评论
0/150
提交评论