版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省兴化市顾庄区2023-2024学年九年级数学第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.方程x2﹣2x﹣4=0的根的情况()A.只有一个实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.没有实数根2.如图,用尺规作图作的平分线,第一步是以为圆心,任意长为半径画弧,分别交于点;第二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,那么为所作,则说明的依据是()A. B. C. D.3.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.4.二次函数图象的顶点坐标是()A. B. C. D.5.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.56.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A.25° B.35° C.50° D.65°7.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A.2cm B.4cm C.6cm D.8cm8.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水9.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A. B.2 C.1.5 D.10.若关于x的一元二次方程有实数根,则实数k的取值范围是()A. B. C.且 D.11.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70° B.80° C.84° D.86°12.如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A. B.2 C. D.二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿对角线BD折叠,使点C落在点E处,BE交AD于点F,则BF的长为________.14.若扇形的圆心角为,半径为,则该扇形的弧长为__________.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为_____米.16.在一只不透明的袋中,装着标有数字,,,的质地、大小均相同的小球.小明和小东同时从袋中随机各摸出个球,并计算这两球上的数字之和,当和小于时小明获胜,反之小东获胜.则小东获胜的概率_______.17.如图,在中,,,若为斜边上的中线,则的度数为________.18.正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为______.三、解答题(共78分)19.(8分)若的整数部分为,小数部分为;(1)直接写出_________,__________;(2)计算的值.20.(8分)如图方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向上平移3个单位长度,画出平移后的△A1B1C1;(2)写出A1,C1的坐标;(3)将△A1B1C1绕B1逆时针旋转90°,画出旋转后的△A2B1C2,求线段B1C1在旋转过程中扫过的面积(结果保留π).21.(8分)小明和小亮两人一起玩投掷一个普通正方体骰子的游戏.(1)说出游戏中必然事件,不可能事件和随机事件各一个;(2)如果两个骰子上的点数之积为奇数,小明胜,否则小亮胜,你认为这个游戏公平吗?如果不公平,谁获胜的可能性较大?请说明理由.请你为他们设计一个公平的游戏规则.22.(10分)如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面,竹标顶端离地面,小明到竹杆的距离,竹杆到塔底的距离,求这座古塔的高度.23.(10分)已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.24.(10分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.(1)求抛物线的解析式和对称轴;(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)25.(12分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)26.已知关于的方程①求证:方程有两个不相等的实数根.②若方程的一个根是求另一个根及的值.
参考答案一、选择题(每题4分,共48分)1、B【详解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有两个不相等的实数根.故选B.【点睛】一元二次方程根的情况:(1)b2-4ac>0,方程有两个不相等的实数根;(2)b2-4ac=0,方程有两个相等的实数根;(3)b2-4ac<0,方程没有实数根.注:若方程有实数根,那么b2-4ac≥0.2、A【分析】根据作图步骤进行分析即可解答;【详解】解:∵第一步是以为圆心,任意长为半径画弧,分别交于点∴AE=AF∵二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,∴CE=DE,AD=AD∴根据SSS可以判定△AFD≌△AED∴(全等三角形,对应角相等)故答案为A.【点睛】本题考查的是用尺规作图做角平分线,明确作图步骤的依据是解答本题的关键.3、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC
∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4、B【解析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标.【详解】∵二次函数y=﹣(x+2)2+6,∴该函数的顶点坐标为(﹣2,6),故选:B.【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.5、B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.6、A【解析】试题分析:∵AB是⊙O的直径,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故选A.考点:圆周角定理7、B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O的半径为4cm,点P在⊙O上,∴OP=4cm.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.8、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可.【详解】解:A.“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B.“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C.“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D.“在标准大气压下,气温3°C时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键.9、B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=∠ACB=30°,∴BE=CE,∵AB∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=AE,∴=2,故选B.【点睛】本题考查翻折变换(折叠问题).10、C【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为1.【详解】∵关于x的一元二次方程有实数根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵关于x的一元二次方程kx2-2x+1=1中k≠1,故选:C.【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11、B【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.12、D【分析】首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,
∴tan∠BFE=.故选:D【点睛】此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.二、填空题(每题4分,共24分)13、5【解析】由翻折的性质可以知道,由矩形的性质可以知道:,从而得到,于是,故此BF=DF,在中利用勾股定理可求得BF的长.【详解】由折叠的性质知,CD=ED,BE=BC.
四边形ABCD是矩形,
在和中,
,
,
;
设BF=x,则DF=x,AF=8-x,
在中,可得:,即,
计算得出:x=5,
故BF的长为5.
因此,本题正确答案是:5【点睛】本题考查了折叠的性质折叠前后两图形全等,即对应线段相等,对应角相等,也考查了勾股定理,矩形的性质.14、【分析】根据弧长公式求解即可.【详解】扇形的圆心角为,半径为,则弧长故答案为:.【点睛】本题考查了弧长计算,熟记弧长公式是解题的关键.15、11.1【解析】根据题意证出△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案.【详解】由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗杆的高度为11.1米.故答案为11.1.【点睛】本题考查了相似三角形的应用;由三角形相似得出对应边成比例是解题的关键.16、【分析】根据题意画出树状图,再根据概率公式即可得出答案.【详解】根据题意画图如下:可以看出所有可能结果共有12种,其中数字之和大于等于9的有8种∴P(小东获胜)==故答案为:.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意画出树状图表示所有情况.17、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得.【详解】∵为斜边上的中线∴AD=CD∴∵∴故答案为:.【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.18、1【分析】要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.【详解】解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP=∴DQ+PQ的最小值是1.【点睛】本题考查轴对称-最短路线问题;正方形的性质.三、解答题(共78分)19、(1),;(2).【分析】先根据算术平方根的定义得到1<<2,则x=1,y=-1,然后把x、y的值代入,再进行二次根式的混合运算即可.【详解】解:解:∵1<3<4,
∴1<<2,
∴x=1,y=-1,(2)当时,原式【点睛】本题考查估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查二次根式的混合运算.20、(1)图形见解析(2)A1(5,7);C1(9,4),(3)见解析,【解析】(1)正确画出平移后的图形,如图所示;(2)A1(5,7);C1(9,4),(3)正确画出旋转后的图形,如图所示,根据线段B1C1旋转过程中扫过的面积为扇形,扇形半径为5,圆心角为90°,则计算扇形面积:.21、(1)详见解析;(2)不公平,规则详见解析.【分析】(1)根据题意说出即可;(2)游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等,算出该情况下两人获胜的概率.【详解】(1)必然事件是两次投出的朝上的数字之和大于1;不可能事件是两次投出的朝上的数字之和为13;随机事件是两次投出的朝上的数字之和为5;(2)不公平.所得积是奇数的概率为×=,故小明获胜的概率为,小亮获胜的概率为,小亮获胜的可能性较大.将“点数之积”改为“点数之和”.【点睛】考查了判断的游戏公平性.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.概率=所求情况数与总情况数之比.22、古塔的高度是.【分析】根据题意即可求出EG、GH和CG,再证出,列出比例式,即可求解.【详解】解:∵小明、竹杆、古塔均与地面垂直,∴∵小明眼睛离地面,竹杆顶端离地面∴∵∴,∴即解得:∴答:古塔的高度是.【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.23、(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】(1)将点(2,3),(3,0)的坐标直接代入y=-x2+bx+c即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y=-x2+bx+c得,解得,故答案为:b=2,c=3;(2)解:令x=0,c=3,二次函数图像与y轴的交点坐标为则(0,3),二次函数解析式为y=y=-x2+2x+3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x<2时,y的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度北京生物医药研发合同
- 2024年度北京市小汽车租赁行业培训合同
- 催化转化器市场发展现状调查及供需格局分析预测报告
- 清洁梳市场需求与消费特点分析
- 2024年度广告制作合同:某品牌广告制作协议
- 04版计算机软件开发与授权合同
- 2024年度合同服务内容扩展:供应链管理合同标的的物流方案与风险控制
- 2024年度农产品批量供应与销售合同
- 退热剂市场发展预测和趋势分析
- 电磁阀市场需求与消费特点分析
- 公司货物采购招标文件(范本)
- 海洋生物资源开发与利用
- 自来水公司中层竞聘题库
- 学前教育大学生职业生涯规划
- 嵌入式职业规划
- 【曾国藩家庭教育思想对现代家庭教育的启示6900字(论文)】
- 《红领巾胸前飘》课件
- 教师的社会需求分析报告
- 修理工安全培训课件
- 睾丸鞘膜积液的护理查房
- 《病历书写基本规范》课件
评论
0/150
提交评论