江苏省盐城市明达中学2023-2024学年数学九上期末统考模拟试题含解析_第1页
江苏省盐城市明达中学2023-2024学年数学九上期末统考模拟试题含解析_第2页
江苏省盐城市明达中学2023-2024学年数学九上期末统考模拟试题含解析_第3页
江苏省盐城市明达中学2023-2024学年数学九上期末统考模拟试题含解析_第4页
江苏省盐城市明达中学2023-2024学年数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市明达中学2023-2024学年数学九上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列事件中,是随机事件的是()A.任意一个五边形的外角和等于540°B.通常情况下,将油滴入水中,油会浮在水面上C.随意翻一本120页的书,翻到的页码是150D.经过有交通信号灯的路口,遇到绿灯2.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7 B.8 C.9 D.103.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是()A.180(1+x)=300 B.180(1+x)2=300C.180(1﹣x)=300 D.180(1﹣x)2=3004.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米5.在Rt△ABC中,∠C=90°,如果,那么的值是()A. B. C. D.36.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB,作线段AB的垂直平分线DE;(2)连接BC,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC,则点O是△ABC的内心 B.C.连接OA,OC,则OA,OC不是⊙的半径 D.若连接AC,则点O在线段AC的垂直平分线上7.一次函数y=﹣3x﹣2的图象和性质,表述正确的是()A.y随x的增大而增大 B.在y轴上的截距为2C.与x轴交于点(﹣2,0) D.函数图象不经过第一象限8.如图,在中,,AB=5,BC=4,点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出两个,则AD的取值范围是()A. B.C. D.9.已知一个几何体如图所示,则该几何体的左视图是()A. B. C. D.10.如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y1<y3<y2二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.12.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.13.已知,且,则的值为__________.14.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b,如:max{3,1}=3,max{﹣3,2}=2,则方程max{x,﹣x}=x2﹣6的解是_____.15.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB=4,则阴影部分的面积是______.16.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.17.在中,,点、分别在边、上,,(如图),沿直线翻折,翻折后的点落在内部的点,直线与边相交于点,如果,那么__________.18.如图,在中,在边上,,是的中点,连接并延长交于,则______.三、解答题(共66分)19.(10分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人.(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率.20.(6分)如图,点的坐标为,把点绕坐标原点逆时针旋转后得到点.(1)求点经过的弧长;(结果保留)(2)写出点的坐标是________.21.(6分)如图,已知抛物线经过点A(1,0)和B(0,3),其顶点为D.设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相似(1)求抛物线的解析式(2)求点P的坐标22.(8分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上;②直接写出∠BDC的度数(用含α的式子表示)为;(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC=2a,试写出此时BF的值.23.(8分)如图,正方形的边长为,,,,分别是,,,上的动点,且.(1)求证:四边形是正方形;(2)求四边形面积的最小值.24.(8分)已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.25.(10分)已知是关于的一元二次方程的两个实数根.(1)求的取值范围;(2)若,求的值;26.(10分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它过点A、B、C(要求尺规作图保留作图痕迹);(2)在(1)所作的圆中,求圆心角∠BOC的度数和该圆的半径

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据随机事件的定义,逐一判断选项,即可得到答案.【详解】∵任意一个五边形的外角和等于540°,是必然事件,∴A不符合题意,∵通常情况下,将油滴入水中,油会浮在水面上,是必然事件,∴B不符合题意,∵随意翻一本120页的书,翻到的页码是150,是不等能事件,∴C不符合题意,∵经过有交通信号灯的路口,遇到绿灯,是随机事件,∴D符合题意,故选D.【点睛】本题主要考查随机事件的定义,掌握必然事件,随机事件,不可能事件的定义,是解题的关键.2、A【分析】分别设出枝干和小分支的数目,列出方程,解方程即可得出答案.【详解】设枝干有x根,则小分支有根根据题意可得:解得:x=7或x=-8(不合题意,舍去)故答案选择A.【点睛】本题考查的是一元二次方程的应用,解题关键是根据题目意思列出方程.3、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.故选:B.【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.4、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【详解】如图,根据题意,易得△MBA∽△MCO,

根据相似三角形的性质可知,即,

解得AM=5m.

则小明的影子AM的长为5米.

故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.5、A【解析】一个角的正弦值等于它的余角的余弦值.【详解】∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选A.【点睛】本题主要考查锐角三角函数的定义,根据sinA得出cosA的值是解题的关键.6、D【分析】根据三角形的外心性质即可解题.【详解】A:连接AC,根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明,故B错误;C:连接OA,OC,则OA,OC是⊙的半径,故C错误D:若连接AC,则点O在线段AC的垂直平分线上,故D正确故答案为:D.【点睛】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.7、D【解析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【详解】A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即与x轴交于点(,0),即C项错误;D.函数图象经过第二三四象限,不经过第一象限,即D项正确.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.8、B【分析】因为在中只能作出一个正方形,所以要作两个菱形则AD必须小于此时的AD,也即这是AD的最大临界值;当AD等于菱形边长时,这时恰好可以作两个菱形,这是AD最小临界值.然后分别在这2种情形下,利用相似三角形的性质求出AD即可.【详解】过C作交DG于M由三角形的面积公式得即,解得①当菱形DEFG为正方形时,则只能作出一个菱形设:,为菱形,,,即,得()若要作两个菱形,则;②当时,则恰好作出两个菱形设:,过D作于H,由①知,,,得综上,故选:B.【点睛】本题考查了相似三角形的性质、锐角三角函数,依据图形的特点判断出两个临界值是解题关键.9、B【解析】根据左视图的定义:由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知:该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义:由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.10、A【分析】先根据k<0可判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【详解】∵双曲线y=上(k<0),∴函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.∵−5<−<0,0<,∴点A(−5,y1),B(−,y1)在第二象限,点C(,y3)在第四象限,∴y3<y1<y1.故选:A.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每小题3分,共24分)11、【解析】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.12、上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题.13、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14、1或﹣1【分析】分两种情况:x≥﹣x,即x≥0时;x<﹣x,即x<0时;进行讨论即可求解.【详解】当x≥﹣x,即x≥0时,∴x=x2﹣6,即x2﹣x﹣6=0,(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2(舍去);当x<﹣x,即x<0时,∴﹣x=x2﹣6,即x2+x﹣6=0,(x+1)(x﹣2)=0,解得:x1=﹣1,x4=2(舍去).故方程max{x,﹣x}=x2﹣6的解是x=1或﹣1.故答案为:1或﹣1.【点睛】考查了解了一元二次方程-因式分解法,关键是熟练掌握定义符号max{a,b}的含义,注意分类思想的应用.15、【分析】作辅助线证明△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,利用等边三角形面积公式S=即可解题.【详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC是等边三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,∵AB=4,即OA=OD=OE=OB=2,易证阴影部分面积=S△CDE==.【点睛】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.16、1【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案为:1.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.17、【分析】设,,可得,由折叠的性质可得,,根据相似三角形的性质可得,即,即可求的值.【详解】根据题意,标记下图∵,∴∵∴设,∴∵由折叠得到∴,∴,且∴∴∴∴∴∴故答案为.【点睛】本题考查了三角形的折叠问题,理解折叠后的等量关系,利用代数式求出的值即可.18、【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BE:EC的比.【详解】解:如图,过O作OG∥BC,交AC于G,

∵O是BD的中点,

∴G是DC的中点.

又AD:DC=1:2,

∴AD=DG=GC,

∴AG:GC=2:1,AO:OE=2:1,

∴S△AOB:S△BOE=2

设S△BOE=S,S△AOB=2S,又BO=OD,

∴S△AOD=2S,S△ABD=4S,

∵AD:DC=1:2,

∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,

∴S△AEC=9S,S△ABE=3S,

∴==【点睛】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.三、解答题(共66分)19、(1)答案见解析;(2)【分析】(1)首先根据题意列表,由树形法可得所有等可能的结果;(2)由选出的是2名主持人恰好1男1女的情况,根据概率公式即可求得解.【详解】解:(1)用树状图表示如下:(A表示男生,B表示女生)由树状图知共有6种等可能结果(2)由树状图知:2名主持人1男1女有3种,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.20、(1);(2)【分析】(1)过点P作x轴的垂线,求出OP的长,由弧长公式可求出弧长;(2)作PA⊥x轴于A,QB⊥x轴于B,由旋转的性质得:∠POQ=90°,OQ=OP,由AAS证明△OBQ≌△PAO,得出OB=PA,QB=OA,由点P的坐标为(1,3),得出OB=PA=3,QB=OA=4,即可得出点Q的坐标.【详解】解:(1)过作轴于,∵,∴,∴点经过的弧长为;(2)把点绕坐标原点逆时针旋转后得到点,分别过点、做轴的垂线,∴,,∴,,,∴,,则点的坐标是.【点睛】本题考查了坐标与图形性质、全等三角形的判定与性质和弧长公式;熟练掌握坐标与图形性质,证明三角形全等是解决问题的关键.21、(1)y=x2-4x+3;(2)(5,8)或(,-).【分析】(1)利用待定系数法求抛物线解析式;(2)设P(x,x2-4x+3)(x>2),则H(2,x2-4x+3),分别表示出PH和HD,分时,时两种情况分别求出x即可.【详解】解:(1)把A(1,0)和B(0,3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2-4x+3;(2)抛物线的对称轴为直线x=2,设P(x,x2-4x+3)(x>2),则H(2,x2-4x+3),∴PH=x-2,HD=x2-4x+3-(-1)=x2-4x+4,∵∠PHD=∠AOB=90°,∴当时,△PHD∽△AOB,即,解得x1=2(舍去),x2=5,此时P点坐标为(5,8);当时,△PHD∽△BOA,即,解得x1=2(舍去),x2=,此时P点坐标为(,-);综上所述,满足条件的P点坐标为(5,8)或(,-).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定;会利用待定系数法求二次函数解析式,会解一元二次方程;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.22、(1)①详见解析;②α;(2)详见解析;(3)当B、O、F三点共线时BF最长,(+)a【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A为圆心,AB为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC,可求∠BDC的度数;(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F三点共线时,BF最长,根据等腰直角三角形的性质和勾股定理可求,,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案为:α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC=2a,∴,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴,∵点O是AC中点,AC=2a,∴,∴,∴BH=3a,∴,∵点C关于直线l的对称点为点D,∴∠AFC=90°,∵点O是AC中点,∴,∴,∴当B、O、F三点共线时BF最长;最大值为(+)a.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.23、(1)详见解析;(2)四边形面积的最小值为1.【分析】(1)

由正方形的性质得出.∠A=∠B=∠C=∠D=90°

,AB=

BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=

FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;

(2)设四边形EFG

H面积为S,AE=xcm,

BE=

(8-x)

cm,由勾股定理得出S=x2+

(8-x)2=2

(x-4)

2+1,

S是x的二次函数,容易得出四边形EFGH面积的最小值.【详解】证明:(1)∵四边形是正方形,∴,.∵,∴.∴,∴,,,∴四边形是菱形,∵,,,∴四边形是正方形.(2)设,则,S四边形EFGH,∴当时,四边形面积的最小值为1.【点睛】本题考查了正方形性质和判定,根据已知条件可证4个三角形全等,由全等三角形性质得到四边形EFGH是正方形;本题还考查了用二次函数来解决面积的最值问题.24、(1)60°,5;(2)AM=BM+CM【分析】(1)由旋转性质可得△ABM≌△CAN,根据全等三角形的性质和等边三角形的判定可得△AMN是等边三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论