版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页圆的面积教案
圆的面积教案篇1
教学内容:
教科书第67-68页。
教学目标:
1、使同学理解圆面积公式的推导过程,掌控求圆面积的方法并能正确计算;并能运用公式解答一些简约的实际问题。
2、通过操作,小组合作等教学活动,培育同学的动手实践技能,分析、观测和概括技能,进展同学的空间概念。
德育目标:
渗透极限思想,进行辩证唯物主义观念的启蒙教育。
教学重点:
正确计算圆的面积
教学难点:
圆面积公式的推导
学具预备:
水彩笔、剪刀、附页1
教具预备:
多媒体课件
教学过程:
一、导入新课
请看一幅图,从图中你发觉了什么信息?
只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。
二、新授
1、什么是圆的面积?
〔1〕涂出一个圆的面积
〔2〕用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、同学拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、同学汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,争论以下两个问题:
1〕转化后长方形的长相当于什么?宽相当于什么?
2〕你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报争论结果,师板书
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
9、运用新知识,解决问题。
1〕r=5cm,求圆的面积
2〕课始主体图中的问题
3〕书P703.
三、总结:
小结本课知识,提出要求,盼望大家能运用我们今日的所学所得解决我们生活中遇到的更多问题。
板书设计:
圆的面积
剪、拼==》转化
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
S圆=πr2
教后反思:
本课的教学首先让同学在实践中操作感知,理解圆的面积的详细含义。接着让同学回忆旧知,引导同学应用旧知类比迁移。这样,既实现了有意识地学法指导,又援助同学找到了解决问题的策略。然后给同学提供了自主剪拼的时间,也是有意识地给同学提供了解决问题的方法和途径。然而尽管给了比较充分的时间,同学能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,援助同学把抽象的内容详细化,进而加深对圆面积公式推导过程的理解。引导同学通过试验,采纳转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,争论推导圆面积计算公式。最末安排了坡度适当、由易到难的练习题,使同学由浅入深地掌控了知识,形成了技能。
圆的面积教案篇2
教学目标:
1、同学通过观测、操作、分析和争论,推导出圆的面积公式。
2、能够利用公式进行简约的面积计算。
3、渗透转化思想,初步了解极限思想,培育同学的观测技能和动手操作技能。
教学重难点:渗透转化思想,初步了解极限思想,培育同学的观测技能和动手操作技能。
教学过程
一、尝试转化,推导公式
1、确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
引导同学明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2、尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?〔板书课题:圆的面积〕
请大家看屏幕〔利用课件演示〕,老师先给大家一点提示。
师:〔老师协作课件演示作适当说明〕假如我们把一个圆形平均分成16份〔如图三〕,其中的每一份〔如图四,课件闪耀其中1份〕都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边〔老师指示〕跟圆形有什么关系呢?
引导同学观测,明确这个近似三角形的两条边其实都是圆的半径。
师:假如我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都预备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设:同学利用这种近似三角形拼组图形会有肯定的难度,老师要加强巡察和有针对性的指导,既鼓舞同学拼出自己想象中的图形,又要引导他们拼出最简约、最简单计算面积的图形。一般状况下,同学会拼出如下几种图形〔如图五、图六、图七〕。
3、探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。假如有小组转化成了不规章的图形,老师应实时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思索一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有转变?请小组内争论。
师:谁来告知大家,它们的面积有没有转变?
师:是的,没有转变,就是说:这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是假如把圆等分成32份、64份、128份、256份……一贯这样下去分成许多许多份,拼成的图形就变为真正的长方形〔课件演示,如图八〕。
4、推导公式。
师:现在我们就来看这个长方形。同学们,假如圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行争论争论。
师:好,同学们,谁能首先告知老师,这个长方形的宽是多少?
预设:
依据同学的回答,老师演示课件,同时闪耀圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?〔老师边演示课件边说明〕这个长方形是由两个半圆开展后拼成的,请大家看屏幕,这个红色的半圆开展后,其中这条黄色的线段就是长方形的长〔如图十〕,请同学们认真观测〔课件继续演示如图十一,半圆开展后再还原,再开展,〕,这个长方形的长到底与圆的什么有关?到底是多少呢?
预设:
老师引导同学明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半〔假如同学有困难的话,老师利用课件演示,如图十二〕。并且让同学通过计算得出长方形的长就是πr。
师:现在我们已经知道了这个长方形的长和宽〔如图十三〕,它的面积应当是多少?那圆的面积呢?
预设:
老师依据同学的回答进行相关的板书。
师:你们真了不得,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题
1、教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,需要先知道什么?〔出例如1〕假如我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
预设:
老师应加强巡察,发觉问题实时指导,并提示同学留意公式、单位运用是否正确。
2、完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。
订正。
3、教学例2。
师:〔出例如2〕这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想方法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
预设:
老师继续对学困生加强巡察,假如还有问题的同学并予以指导。
沟通,订正。
三、课堂作业。
教材第70页第2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
课后作业:完成数练第31页。
圆的面积教案篇3
教学目标:
1.使同学经受操作、观测、验证和争论归纳等数学活动的过程,探究并掌控圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简约实际问题。
2.使同学进一步体会转化方法的价值,培育运用已学知识解决新问题的技能,进展空间观念和初步的推理技能。
3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的新奇心和爱好。
教学重点:
探究并掌控圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学预备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1.师:四班级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
同学回答,老师予以确定。
2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3.引入:我们已经讨论了圆的周长和直径、半径的计算方法,今日这节课我们来讨论圆的面积是如何计算的。
〔板书:圆的面积〕
设计意图通过复习,促进同学对周长和已知周长求直径或半径的理解,唤起同学求长方形和正方形面积的阅历,为新课的学习做好预备。
二、合作沟通,探究新知
1.教学例7。
〔l〕初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
〔2〕圆的面积和半径或直径到底有着怎样的关系呢?我们可以做一个试验。
〔3〕出例如7第一幅图。思索:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的`半径有什么关系?
〔4〕同学独立完成填空。
〔5〕猜想:圆的面积大约是正方形面积的几倍?
同学回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
〔6〕出例如7后两幅图,根据同样的方法进行计算并填表。
正方形的面积
圆的半径
圆的面积
圆面积大约是正方形面积的几倍
〔精确到非常位〕
2.沟通归纳:观测上面的表格,你有什么发觉?
通过沟通,明确
圆的面积教案篇4
【教学内容】
《义务教育课程标准试验教科书·数学》六班级上册第69~71例1、例2。
【教学目标】
1.同学通过观测、操作、分析和争论,推导出圆的面积公式。
2.能够利用公式进行简约的面积计算。
3.渗透转化思想,初步了解极限思想,培育同学的观测技能和动手操作技能。
【教、学具预备】
1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板假设干个;
3.剪刀假设干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
预设:
引导同学明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?〔板书课题:圆的面积〕
请大家看屏幕〔利用课件演示〕,老师先给大家一点提示。
圆的面积教案篇5
一、以旧引新〔6分钟〕
1.复习正方形的面积公式和圆的面积公式。
2.回答下面各圆的面积。
1.说出S正=a2、S圆=πr2
2.左圆面积=π×22=4π
右圆面积=π×〔2÷2〕2=π
1.边长是5cm的正方形面积是多少?
5×5=25〔cm2〕
2.假如r=4cm,那么圆的面积是多少?
3.14×42
=3.14×16
=50.24〔cm2〕
二、动手操作,感知特点。〔15分钟〕
1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,
思索:
〔1〕外方内圆的图形是怎样组成的?它有什么特点?
老师明确:外方内圆的图形称为圆外切正方形。
〔2〕外圆内方的图形是怎样组成的?它有什么特点?
老师明确:外圆内方的图形称为圆内接正方形。
2.引导同学画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。
3.引导同学在圆内画一个最大的正方形。
4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。
1.
〔1〕外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。
〔2〕外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。
2.小组合作争论沟通,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。
3.小组合作争论沟通,说出作图的方法并明确:正方形的对角线等于圆的直径。
4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。
3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。
三、探究思索,解决问题。〔10分钟〕
1.计算圆外切正方形与圆之间部分的面积。
〔1〕课件出示半径为1m的圆外接正方形。组织同学争论计算方法。
〔2〕组织同学算出正方形和圆之间部分的面积。
2.计算出圆内接正方形与圆之间部分的面积。
课件出示半径为1m的圆的方形组合图形,组织同学争论计算方法。
1.
〔1〕观测图形的特点,争论计算方法并尝试汇报沟通。
〔2〕分别算出这个圆和正方形的面积:
S圆=3.14×12=3.14m2
S正=2×2=4m2
S阴=S正-S圆
=4-3.14
=0.86m2
2.观测图形,发觉圆的半径与正方形的关系,争论计算方法并尝试汇报沟通。
4.王师傅做一个零件,零件的外形是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?
四、拓展应用。〔5分钟〕
1.如下列图,已知圆的半径是3cm,求这个圆和正方形之间的面积。
2.下列图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?
1.读题,审题,明确题意后,尝试独立完成。
2.独立完成,然后全班汇报。
5.计算阴影部分的面积。
×102π-102≈57(cm2)
五、全课总结。〔5分钟〕
1.谈谈这节课你有哪些体会。
2.布置作业。
同学谈本节课学习的收获。
教学过程中老师的疑问
圆的面积教案篇6
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使同学在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材径直提出问题:能不能把圆转化成已学过的图形来计算面积?由于让同学完全自主的探究如何把圆转化成长方形是有很大难度,但是教材给出了提示,让同学利用学具进行操作,在此基础上让同学发觉院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最末教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1.充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让同学回忆已学过的图形面积的含义,并进行分析对比,使同学认识到它们的共同点都是指图形所占平面的大小。
2.要充分利用直观教具,让同学在动手操作中自主探究,例如,教学圆面积计算公式的推导过程时,可以先让同学把教材后面所附的圆形做成学具,在老师指导下,可以通过小组合作的方式,自行决断等分成多少份,自由的分一分,剪一剪,拼一拼。最末把拼成的加以比较,使同学看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经受圆面积计算公式的推导过程,掌控圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简约的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点:圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
圆的面积教案篇7
教学目标:
1.让同学结合详细的情境认识环形的特征,掌控计算环形的面积的方法,并能精确计算一些简约组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使同学进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的爱好和学好数学的信心。
教学重点:
掌控计算环形面积的方法,并能精确计算一些简约组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学预备:
圆规,环形图片,教学情境图。
教学过程:
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
〔l〕观测图片,说说这些图形都是由什么组成的。
〔2〕你能举出一些环形的实例吗?
2.引入:今日这节课我们就一起来讨论环形面积的计算方法。
二、合作沟通,探究新知
1.教学例11。
〔1〕出例如11题目,读题。
〔2〕提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思索。
〔3〕小组争论,理清解题思路。
〔4〕集体沟通
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
〔5〕同学按步骤独立计算。
〔6〕组织沟通解题方法,老师板书
①求出外圆的面积:3.14102=314〔平方厘米〕
②求出内圆的面积:3.1462=113.04〔平方厘米〕
③计算圆环的面积:314-113.04=200.96〔平方厘米〕
〔7〕提问:有更简便的计算方法吗?
〔8〕同学回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法安排率进行简便计并。
简便计算
3.14102-3.1462
=3.14〔102-62〕
=3.1464
=200.96〔平方厘米〕
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:假如用R表示大圆的半径,用r表示小圆的半径,你能依据上面的计算过程推导出环形面积的计算公式吗?
圆的面积教案篇8
教学目标
1.使同学理解圆面积公式的推导过程,掌控求圆面积的方法并能正确计算;
2.培育同学动手操作的技能,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习预备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决断圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成假设干等份。
展示曲变直的改变图。
2.动手操作学具,推导圆面积公式。
为了讨论方便,我们把圆等分成16份。圆周部分近似看作线段,其
用自己的学具(等分成16份的圆)拼摆成一个你熟识的、学过的平面图形。
思索:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(同学开始动手摆,小组争论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,同学表达,老师板书:
②还能不能拼出其它图形?
同学可以拼出:
等等
刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并依据转化后的图形与圆面积的关系推导出面积公式。
例1一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?假如给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:分米)d=6(单位:分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思索题:
已知正方形的面积是18平方米,求圆的面积。(如图)
课堂教学设计说明
1.使同学运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导同学动手操作,小组争论,从各个角度推导出圆面积公式。培育同学动手操作,口头表达和规律思维的技能,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使同学由浅入深地掌控了知识,形成了技能。同时,还留意培育同学规律推理的技能。
圆的面积教案篇9
教学目标:
1、使同学学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。
2、培育同学敏捷、综合运用知识的技能,运用所学的知识解决简约的实际问题。
3、培育同学的规律思维技能。
教学重点:培育综合运用知识的技能。
教学难点:培育综合运用知识的技能。
教学过程:
一、复习。
1、口算:
3242528292202
267
2、思索:
〔1〕圆的周长和面积分别怎样计算?二者有何区分?
〔2〕求圆的面积需要知道什么条件?
〔3〕知道圆的周长能够求它的面积吗?
二、新课。
1、教学练习十六第3题
小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?
已知:c=125.6厘米s=r2
r:125.6(23.14)3.14202
=125.66.28=3.14400
=20(厘米)=1256(平方厘米)
答:这棵树干的横截面积1256平方厘米。
3、教学环形面积。
〔1〕例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米r=2厘米求:s=?
3.14623.1422
=3.1436=3.144
=113.04〔平方厘米〕=12.56〔平方厘米〕
113.04-12.56=100.48〔平方厘米〕
第二种解法:3.14〔62-22〕=100.48(平方厘米)
〔2〕小结:环形的面积计算公式:
S=R2-r2或S=〔R2-r2〕
〔3〕完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、巩固练习。
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
〔1〕这节课的学习内容是什么?
〔2〕求圆的面积时题中给出的已知条件有几种状况?怎样求出圆面积?
已知半径求面积S=r2
已知直径求面积S=〔〕2
已知周长求面积S=〔〕2
〔3〕环形面积:S=〔R2-r2〕
四、作业
课本P70第4、6、7题。
教学追记:
本堂课,在我带领着同学利用教具进行操作,在此基础上,让同学自主发觉圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给同学,让同学通过思索争论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发觉这两种算法的全都性,同时提示同学尽量运用简便算法,减削计算量。
圆的面积教案篇10
教学内容:学校数学义务教育教材第十一册p129p130
教学目的:
1、通过操作,引导同学推导出圆面积的计算公式,并能运用公式解答一些简约的实际问题。
2、激发同学参加整个课堂教学活动的学习爱好,培育同学的分析、观测和概括力,进展同学的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:圆面积公式的推导。
教学难点:弄清圆与转化后的近似图形之间的关系。
学具:每四人小组一个彩色圆〔老师分好8等分点〕、两三个圆、固体胶、卡纸、剪刀。
教具:课件。
教学过程:
一、谈话揭题:
出示图:
你看到了什么?刚才同学们提到的圆的面积就是今日这节课我们要来讨论的内容。〔出示课题:圆的面积〕那么圆的面积和什么有关?〔半径、直径〕
二、新课教学:
1、猜想:
现在请大家看,这儿有一张正方形的纸,〔课件演示〕用它剪一个最大的圆,〔课件演示〕假如圆的半径用r来表示,你知道原来正方形的面积怎么求吗?〔2r*2r〕整理一下〔板书:2r*2r=4r的平方〕〔按虚线〕我们再来看看图,你明白了什么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年牛津译林版选择性必修1地理下册月考试卷
- 二零二五年度宠物尸体处理与环保合同4篇
- 2025版工业机器人生产加工委托合同3篇
- 2025年统编版选修4地理下册月考试卷
- 2025年冀教版九年级历史下册月考试卷含答案
- 2025年智能家居厨具集成安装合同模板4篇
- 二零二五年度车库租赁合同模板及注意事项5篇
- 2025版个人住宅电梯公寓租赁及租赁合同续签协议2篇
- 2024届内蒙古自治区包头市高三下学期适应性考试(二)文综试卷(答案不全)-高中地理
- 二零二五年度车间装修与节能环保设施建设合同3篇
- 幼儿平衡车训练课程设计
- 肩袖损伤的护理查房课件
- 2023届北京市顺义区高三二模数学试卷
- 公司差旅费报销单
- 我国全科医生培训模式
- 2021年上海市杨浦区初三一模语文试卷及参考答案(精校word打印版)
- 八年级上册英语完形填空、阅读理解100题含参考答案
- 八年级物理下册功率课件
- DBJ51-T 188-2022 预拌流态固化土工程应用技术标准
- 《长津湖》电影赏析PPT
- 销售礼仪培训PPT
评论
0/150
提交评论