2022-2023学年湖北省荆门市沙洋县实验中学高二数学理摸底试卷含解析_第1页
2022-2023学年湖北省荆门市沙洋县实验中学高二数学理摸底试卷含解析_第2页
2022-2023学年湖北省荆门市沙洋县实验中学高二数学理摸底试卷含解析_第3页
2022-2023学年湖北省荆门市沙洋县实验中学高二数学理摸底试卷含解析_第4页
2022-2023学年湖北省荆门市沙洋县实验中学高二数学理摸底试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖北省荆门市沙洋县实验中学高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的图象是(

)参考答案:D2.“a=﹣1”是“直线a2x﹣y+6=0与直线4x﹣(a﹣3)y+9=0互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】直线的一般式方程与直线的垂直关系.【分析】由题意需要把﹣1代入直线方程,判断斜率之积是否为﹣1;再由直线垂直的等价条件求出两直线垂直时a的值,再判断充分性和必要性是否成立.【解答】解:当a=﹣1时,直线分别为x﹣y+6=0与4x+4y+9=0,则两直线垂直;当直线a2x﹣y+6=0与4x﹣(a﹣3)y+9=0互相垂直时,则有4a2+(a﹣3)=0,解得a=﹣1或,故选A.3.已知,则A. B. C. D.参考答案:B【分析】运用中间量比较,运用中间量比较【详解】则.故选B.【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.对于下列命题:,判断正确的是()A

(1)假(2)真

B

(1)真(2)假,

C

(1)、(2)都假,

D

(1)、(2)都真参考答案:B略5.为了在运行下面的程序之后得到输出16,键盘输入x应该是(

INPUTxIF

x<0

THENy=(x+1)*(x+1)ELSEy=(x-1)*(x-1)

ENDIFPRINTyENDA.3或-3

B.-5

C.5或-3

D.5或-5参考答案:D6.已知函数在区间上单调递减,则的最大值是(

)A.

B.

C.

D.参考答案:D7.已知全集为R,集合,,则集合A. B.

C.

D.参考答案:C8.在等比数列中,若,则

)A.

B.

C.

D.-2参考答案:A9.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.参考答案:B【考点】几何概型.【分析】函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.【解答】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2﹣4b2<0,对应的区域为直线a﹣2b=0的上方,面积为1﹣=,则根据几何概型的概率公式可得所求的概率为.故选:B.【点评】本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.10.如图,已知正三棱柱的各条棱长都相等,是侧棱的中点,则异面直线所成的角的大小是

()A.30°

B.45°

C.60°

D.90°

参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.,则____________.参考答案:略12.过点且和抛物线相切的直线方程为

.参考答案:和略13.已知,则

.参考答案:略14.已知表示两个不同的平面,是一条直线,且,则“”是“”的

条件(填:充分条件、必要条件、充要条件、既不充分也不必要条件)参考答案:充分不必要条件15.曲线在点处的切线方程是

.参考答案:16.在复平面内,复数对应的点位于第_______象限.参考答案:四【分析】先对复数进行运算化简,找出其对应的点即可判断出其所在的象限.【详解】解:因为所以复数对应的点为,位于第四象限故答案为:四.【点睛】本题考查了复数的除法运算,复数与复平面中坐标的关系,属于基础题.17.已知函数,则=

参考答案:2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知是公比为的等比数列,且成等差数列.(I)求的值;(II)设是以2为首项,为公差的等差数列,其前项和为,当时,比较与的大小,并说明理由.参考答案:解:(I)由题设

而,故;4分(II)由(1),,当故对于

12分19.如图,已知双曲线C:﹣y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.参考答案:【考点】直线与圆锥曲线的综合问题;直线与圆锥曲线的关系.【分析】(1)依题意知,A(c,),设B(t,﹣),利用AB⊥OB,BF∥OA,可求得a=,从而可得双曲线C的方程;(2)易求A(2,),l的方程为:﹣y0y=1,直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N,可求得M(2,),N(,),于是化简=可得其值为,于是原结论得证.【解答】(1)解:依题意知,A(c,),设B(t,﹣),∵AB⊥OB,BF∥OA,∴?=﹣1,=,整理得:t=,a=,∴双曲线C的方程为﹣y2=1;(2)证明:由(1)知A(2,),l的方程为:﹣y0y=1,又F(2,0),直线l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N.于是可得M(2,),N(,),∴=====.20.已知向量,,且与满足,其中实数.(Ⅰ)试用表示;(Ⅱ)求的最小值,并求此时与的夹角的值.参考答案:解:(I)因为,所以,,……3分,.

…………6分(Ⅱ)由(1),…………9分当且仅当,即时取等号.

…………10分此时,,,,所以的最小值为,此时与的夹角为…………12分

略21.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.P(K2>k0)0.100.050.010.005k02.7063.8416.6357.879

附:K2=参考答案:【考点】独立性检验的应用;列举法计算基本事件数及事件发生的概率.【分析】(1)利用2×2列联表中的数据计算观测值x2,对照表中数据即可得出结论;(2)利用列举法求出从这5名学生中任取3人的基本事件数,计算对应的概率即可.【解答】解:(1)将2×2列联表中的数据代入公式,计算得x2==≈4.762,因为4.762>3.841,所以有95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异;(2)这5名数学系学生中,2名喜欢甜品的记为A、B,其余3名不喜欢甜品的学生记为c、d、e,则从这5名学生中任取3人的结果所组成的基本事件为ABc,ABd,ABe,Acd,Ace,Ade,Bcd,Bce,Bde,cde,共10种;3人中至多有1人喜欢甜品的基本事件是Acd,Ace,Ade,Bcd,Bce,Bde,cde,共7种;所以,至多有1人喜欢甜品的概率为P=.22.箱中装有4个白球和个黑球.规定取出一个白球得2分,取出一个黑球得1分,现从箱中任取3个球,假设每个球被取出的可能性都相等.记随机变量X为取出的3个球所得分数之和.(1)若,求m的值;(2)当时,求X的分布列.参考答案:(1)1;(2)分布列见解析.【分析】(1)通过分析可知时,取出的个球都是白球,根据超几何分布的概率公式构造方程可求得结果;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论