辽宁省抚顺市2023年数学八上期末复习检测模拟试题含解析_第1页
辽宁省抚顺市2023年数学八上期末复习检测模拟试题含解析_第2页
辽宁省抚顺市2023年数学八上期末复习检测模拟试题含解析_第3页
辽宁省抚顺市2023年数学八上期末复习检测模拟试题含解析_第4页
辽宁省抚顺市2023年数学八上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺市2023年数学八上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.2.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A. B.C. D.3.如图,△DEF为直角三角形,∠EDF=90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30° B.35° C.40° D.55°4.下列式子从左到右变形是因式分解的是()A.B.C.D.5.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.67.从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A. B. C. D.8.如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A.是等腰三角形 B.C.平分 D.折叠后的图形是轴对称图形9.下列命题:①若则;②等边三角形的三个内角都是;③线段垂直平分线上的点到线段两端的距离相等.以上命题的逆命题是真命题的有()A.个 B.个 C.个 D.个10.若,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数11.代数式是关于,的一个完全平方式,则的值是()A. B. C. D.12.将一副常规的三角尺按如图方式放置,则图中∠1的度数为()A.95° B.100° C.105° D.115°二、填空题(每题4分,共24分)13.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅有0.00000000034米,将数据0.00000000034用科学记数法表示为_______.14.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.15.函数,的图象如图所示,当时,的范围是__________.16.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.17.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.18.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为_____.三、解答题(共78分)19.(8分)(1)计算:(﹣2a2b)2+(﹣2ab)•(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.20.(8分)若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为1.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;21.(8分)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).备用图1备用图222.(10分)平某游泳馆暑期推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费20元;方式二:不购买会员证,每次游泳付费25元.设小明计划今年暑期游泳次数为x(x为正整数).根据题意列表:游泳次数5810…x方式一的总费用(元)200260m…方式二的总费用(元)125200250…(1)表格中的m值为;(2)根据题意分别求出两种付费方式中与自变量x之间的函数关系式并画出图象;(3)请你根据图象,帮助小明设计一种比较省钱的付费方案.23.(10分)为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?24.(10分)如图,设图中每个小正方形的边长为1,(1)请画出△ABC关于y轴对称图形△A′B′C′,其中ABC的对称点分别为A′B′C′;(2)直接写出A′、B′、C′的坐标.25.(12分)计算①②26.如图,直角坐标系中,直线分别与轴、轴交于点,点,过作平行轴的直线,交于点,点在线段上,延长交轴于点,点在轴正半轴上,且.(1)求直线的函数表达式.(2)当点恰好是中点时,求的面积.(3)是否存在,使得是直角三角形?若存在,直接写出的值;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.2、D【详解】试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.3、B【分析】由∠EDF=90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【详解】解:∵∠EDF=90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,∴∠A=;故选:B.【点睛】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题.4、B【解析】试题分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可:A、不是因式分解,故此选错误;B、,正确;C、,不是因式分解,故此选错误;D、,不是因式分解,故此选错误.故选B.考点:因式分解的意义..5、D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.6、C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.7、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、不轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【分析】由折叠前后的两个图形全等可以得出∠FBD=∠DBC,由长方形的性质可以得出AD∥BC,所以∠FDB=∠FBD=∠DBC,故得出是等腰三角形,根据折叠的性质可证的,折叠前后的两个图形是轴对称图形.【详解】解:∵∴∠FBD=∠DBC∵AD∥BC∴∠FDB=∠FBD=∠DBC∴是等腰三角形∴A选项正确;∵∴AB=ED在△AFB和△FED中∴∴B选项正确;折叠前后的图形是轴对称图形,对称轴为BD∴D选项正确;故选:C.【点睛】本题主要考查的是折叠前后的图形是轴对称图形并且全等,根据全等三角形的性质是解此题的关键.9、B【分析】先写出各命题的逆命题,然后根据绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理逐一判断即可.【详解】解:①“若则”的逆命题为“若,则”,当,则,故①的逆命题为假命题;②“等边三角形的三个内角都是”的逆命题为“三个内角都是60°的三角形是等边三角形”,该命题为真命题,故②的逆命题为真命题;③“线段垂直平分线上的点到线段两端的距离相等”的逆命题为“到线段两端点距离相等的点在这条线段的垂直平分线上”,该命题为真命题,故②的逆命题为真命题;综上:有2个符合题意故选B.【点睛】此题考查的是写一个命题的逆命题、绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理,掌握绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理是解决此题的关键.10、B【解析】∵,∴空格中的数应为:.故选B.11、C【分析】根据完全平方公式的a、b求出中间项即可.【详解】,根据a、b可以得出:k=±2×3=±1.故选C.【点睛】本题考查完全平方公式的计算,关键在于熟练掌握完全平方公式.12、C【分析】根据题意求出∠BCO,再根据三角形的外角的性质计算即可.【详解】如图,由题意得:∠BCO=∠ACB﹣∠ACD=60°-45°=15°,∴∠1=∠B+∠BCO=90°+15°=105°.故选C.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答本题的关键.二、填空题(每题4分,共24分)13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000034=3.4×10-10,故答案为:3.4×10-10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、3300元【分析】设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于3人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x个同学,航空组有y个同学,依题意得x+2x-3+y=18解得x=∵航空组的同学不少于3人但不超过9人,x,y为正整数,故方程的解为,,设为无人机组的每位同学购买a个无人机模型,当时,依题意得6a×165+2×9×75+3×3×98=6114解得a=,不符合题意;当时,依题意得5a×165+2×7×75+6×3×98=6114解得a=4,符合题意,故购买无人机模型的费用是3300元;当时,依题意得4a×165+2×5×75+9×3×98=6114解得a=,不符合题意;综上,答案为3300元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.15、【分析】当时,的图象在的图象的下方可知.【详解】解:当时,,,两直线的交点为(2,2),当时,,,两直线的交点为(-1,1),由图象可知,当时,x的取值范围为:,故答案为:.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是准确看图,通过图象得出x的取值范围.16、17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m,则弦为m+1,所以有,解得,,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.17、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.18、2.1×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将21nm用科学记数法可表示为21×10﹣9=2.1×10﹣1.故答案为:2.1×10﹣1.【点睛】本题考查了科学记数法的表示方法,科学记数法的表现形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共78分)19、(1)10a4b1;(1)(a﹣b)1.【分析】1)先根据幂的乘方和积的乘方、单项式乘以单项式的运算法则计算,再合并同类项即可;(1)先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.【详解】解:(1)原式=4a4b1+6a4b1=10a4b1;(1)原式=a1+1ab+b1﹣4ab=a1﹣1ab+b1=(a﹣b)1.【点睛】本题考查整式的运算和完全平方公式分解因式.解题的关键是运用幂的乘方和积的乘方、单项式乘以单项式的运算法则去括号,及熟练运用合并同类项的法则.能够正确应用完全平方公式.20、(1)236,2;(2)见解析.【分析】(1)按照定义求解即可;(2)设A的十位数字是a,个位数字是b,表示出至善数和明德数,作差即可证明.【详解】(1)26的至善数是中间加3,故为236,明德数是加3,故为2.故答案为:236,2;(2)设A的十位数字是a,个位数字是b,则它的至善数是100a+30+b,明德数是10a+b+3.∵100a+30+b﹣(10a+b+3)=90a+43=43(2a+1)∴“至善数”与“明德数”之差能被43整除.【点睛】本题考查了因式分解的应用,理解“明德数”、“至善数”的定义是解答本题的关键.21、(1)AB=;(1)C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(1)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=2,AD=1.∴在Rt△ABD中,AB=(1)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C1.②以B为直角顶点,过B作l1⊥AB交x轴于C3,交y轴于C2.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C3.(用三角板画找出也可)由图可知,C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.22、(1)m=300;(2);;(3)当x=20时,选择两种付费方式一样多;当x>20时,选择第一种付费方式比较省钱;当x<20时,选择第二种付费方式比较省钱.【解析】(1)根据题意求出m的值即可;(2)利用待定系数法.将(5,200)(8,260)代入,即可求得方式一的解析式,同理可求得方式二的解析式;(3)通过观察,进行判断哪种付费方式更合算.【详解】(1)游泳次数是10时,m=100+20×10=300;(2)(1)设方式一的解析式为:y=kx+b将(5,200)(8,260)代入得,解得故方式一的解析为:y=20x+100设方式二的解析式为:y1=k1x,将(5,125)代入得k1=25故方式二的解析式为:y1=25x;画出图象如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论