




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾市内湖中学2022-2023学年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.通过随机询问110名性别不同的大学生是否爱好体育,得到如表的列联表:
男女总计爱好402060不爱好203050总计6050110
由公式算得:附表:0.250.150.100.050.0250.0100.0050.001
1.3232.7022.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”参考答案:A【分析】根据条件中所给的观测值,同观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.【详解】K27.8>6.635.即有99%以上的把握认为“爱好该项运动与性别有关”.故选:A2.函数f(x)的定义域为R,f(-1)=2,对任意,f’(x)>2,则f(x)>2x+4的解集为()A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)参考答案:B试题分析:依题意可设,所以.所以函数在R上单调递增又因为.所以要使,只需要.故选B.考点:1.函数的求导.2.函数的单调性.3构建新的函数的思想.3.已知等比数列的公比,则等于(
)A.
B
C
D.参考答案:B4.实数的值为(
)A.
B.
C.
D.参考答案:B略5.如图是一个几何体的三视图,在该几何体的各个面中.面积最小的面的面积为()A.4 B.4 C.4 D.8参考答案:B【考点】由三视图求面积、体积.【分析】作出直观图,根据三视图数据计算各个表面的面积比较得出.【解答】解:根据三视图作出物体的直观图如图所示:显然S△PCD>S△ABC.由三视图特征可知PA⊥平面ABC,DB⊥平面ABC,AB⊥AC,PA=AB=AC=4,DB=2,∴BC=4,∴S△ABC==8,S△PAC==8,S△BCD==4.S梯形PABD==12.∴△BCD的面积最小.故选B.6.复数(i为虚数单位)的共轭复数是()A. B. C. D.参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】利用复数的除法运算法则化简复数,求解即可.【解答】解:复数===.复数(i为虚数单位)的共轭复数是:.故选:D.7.若正方体的棱长为1,则与正方体对角线垂直的截面面积最大值为(A)
(B)
(C)
(D)参考答案:A8.已知函数,则
(
)A.-e
B.e
C.-1
D.1参考答案:C由题得,所以.故答案为:C.
9.已知双曲线的一条渐近线方程是,它的一个点在抛物线的准线1,则双曲线的方程为(
)A.
B.
C.
D.
参考答案:B10.已知椭圆,是椭圆长轴的一个端点,是椭圆短轴的一个端点,为椭圆的一个焦点.若,则该椭圆的离心率为 ()A. B.C. D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为.参考答案:【考点】6H:利用导数研究曲线上某点切线方程.【分析】欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y﹣1=3×(x﹣1),即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=2所围成的三角形的面积为:S=×(2﹣)×4=故答案为:.12.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,有下列命题:①极坐标为的点所对应的复数是;②与曲线无公共点;③圆的圆心到直线的距离是;④与曲线(为参数)相交于点,则点的直角坐标是.其中真命题的序号是
.参考答案:①②13.,则的最小值为______________.参考答案:6略14.已知复数z满足,则的值为
.参考答案:10设,则.∵,∴,∴,解得.∴,∴.
15.若实数x,y满足条件,则2x+y的最大值为.参考答案:4【考点】简单线性规划.
【分析】足约束条件的平面区域,求出可行域中各个角点的坐标,分析代入后即可得到答案.【解答】解:满足约束条件的平面区域如下图所示:由图可知:当x=1,y=2时,2x+y取最大值4故答案为:4【点评】本题考查的知识点是简单线性规划,其中根据约束条件,画出满足约束条件的可行域并求出各角点的坐标,是解答此类问题的关键.16.在集合内任取一个元素,则满足不等式的概率是_______________参考答案:0.25
17.已知,,则的最大值是
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)已知点,是平面内的一个动点,直线与交于点,且它们的斜率之积是.(Ⅰ)求动点的轨迹的方程,并求出曲线的离心率的值;(Ⅱ)设直线与曲线交于M、N两点,当线段的中点在直线上时,求直线的方程.参考答案:(1)设点,则依题意有,
----------3分整理得---------------------------------------5分所以求得的曲线C的方程为
----------6分(2)设,的中点得
,①-②得
---------------------8分即
又
---------------------12分得直线的方程为.--------------------------13分19.(本题满分14分)已知圆经过点,且圆心在直线上,又直线与圆相交于、两点.(1)求圆的方程;(2)若,求实数的值;(3)过点作直线与垂直,且直线与圆相交于、两点,求四边形的面积的最大值.参考答案:20.甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.参考答案:【考点】CH:离散型随机变量的期望与方差.【分析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.【解答】解:(1)甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜①3:0,概率为P1=()3=;②3:1,概率为P2=C()2×(1﹣)×=;③3:2,概率为P3=C()2×(1﹣)2×=∴甲队3:0,3:1,3:2胜利的概率:.(2)乙队得分X,则X的取值可能为0,1,2,3.由(1)知P(X=0)=P1+P2=;P(X=1)=P3=;P(X=2)=C(1﹣)2×()2×=;P(X=3)=(1﹣)3+C(1﹣)2×()×=;则X的分布列为X3210PE(X)=3×+2×+1×+0×=.21.(12分)(2015秋?惠州校级期中)点P(x0,y0)是圆C:x2+y2=1上的一个动点,过点P的直线l与圆C相切(1)求证:直线l的方程为x0x+y0y=1;(2)若直线l与x轴、y轴的交点分别为点A、B,且|PB|,|PA|,|AB|成等比数列,求点P的坐标.参考答案:(1)证明:若y0=0,则l为x=±1,若x0=0,则l为y=±1;…(2分)若x0y0≠0,则直线OT的斜率kOT=,∴直线l的斜率kl=﹣,故直线l的方程为:y﹣y0=﹣(x﹣x0),整理得:x0x+y0y=1,经检验,当x0=0或y0=0,时,直线l的方程也满足上式,故直线l的方程为x0=0;…(6分)(2)解:由(1),得A(,0),B(0,),…(7分)∵同一直线的三条线段|PB|,|PA|,|AB|成等比数列,∴|PB|,|PA|,|AB|在x轴的射影成等比数列.不妨设点P在第一象限,则(﹣x0)2=1.…(8分)∵0<x0<1,∴﹣x0=1,解得x0=(负值舍去),…(10分)将x0=代入x02+y02=1,得y0=(负值舍去),即点P坐标为(,).…(11分)由对称性,满足条件的点P有四个(,),(,﹣),(﹣,),(﹣,﹣).…(12分)考点:直线与圆的位置关系.专题:综合题;直线与圆.分析:(1)分类讨论,利用切线与直线l相切,即可证明结论;(2)利用同一直线的三条线段|PB|,|PA|,|AB|成等比数列,可得|PB|,|PA|,|AB|在x轴的射影成等比数列,即可求点P的坐标.解答:(1)证明:若y0=0,则l为x=±1,若x0=0,则l为y=±1;…(2分)若x0y0≠0,则直线OT的斜率kOT=,∴直线l的斜率kl=﹣,故直线l的方程为:y﹣y0=﹣(x﹣x0),整理得:x0x+y0y=1,经检验,当x0=0或y0=0,时,直线l的方程也满足上式,故直线l的方程为x0=0;…(6分)(2)解:由(1),得A(,0),B(0,),…(7分)∵同一直线的三条线段|PB|,|PA|,|AB|成等比数列,∴|PB|,|PA|,|AB|在x轴的射影成等比数列.不妨设点P在第一象限,则(﹣x0)2=1.…(8分)∵0<x0<1,∴﹣x0=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025云浮市罗定市泗纶镇社区工作者考试真题
- 海南省省直辖县级行政单位文昌市文昌中学2024-2025学年高三第五次月考(4月)地理试题
- 2025年上海市松江区中考二模语文试题含答案
- 2025年高考政治:高中政治七大专题答题模板
- 2024-2025企业安全培训考试试题及答案【必刷】
- 2024-2025新进厂员工安全培训考试试题含答案(黄金题型)
- 2024-2025公司管理人员安全培训考试试题答案完整版
- 2025年管理人员安全培训考试试题附答案【突破训练】
- 2024-2025新入员工安全培训考试试题及答案新版
- 2025年企业安全培训考试试题有解析答案
- 内蒙古鄂尔多斯市2020年中考英语试题(解析版)
- Vue.js前端开发实战(第2版) 课件 第2章 Vue.js开发基础
- 异面直线 高一下学期数学湘教版(2019)必修第二册
- 笔墨时空-解读中国书法文化基因智慧树知到期末考试答案2024年
- 计算机网络故障的诊断与解决方法
- GLB-2防孤岛保护装置试验报告
- 的沟通技巧评估表
- 职场人健康状况调查报告
- 卵巢囊肿诊治中国专家共识解读
- 两癌筛查的知识讲座
- 仪器共享平台方案
评论
0/150
提交评论