第01讲 5.1任意角和弧度制(原卷版)_第1页
第01讲 5.1任意角和弧度制(原卷版)_第2页
第01讲 5.1任意角和弧度制(原卷版)_第3页
第01讲 5.1任意角和弧度制(原卷版)_第4页
第01讲 5.1任意角和弧度制(原卷版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第01讲5.1任意角和弧度制课程标准学习目标①理解并掌握正角、负角、零角的概念。②掌握象限角的范围,掌握终边相同的角的表示方法及判定方法。③了解弧度制,能进行弧度与角度的互化。④由圆周角找出弧度制与角度制的联系,记住常见特殊角对应的弧度数。⑤掌握弧度制中扇形的弧长公式和面积公式,能用公式进行简单的弧长及面积运算。1.通过本节课的学习,要求掌握任意角的概念,并能用集合的形式表示任意角;2掌握弧度制与角度制的互化,;3.记住特殊角的弧度制;4.掌握与弧度制相关的弧长公式和面积公式的运用;知识点01:任意角1、角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形2、角的分类①正角:按逆时针方向旋转所形成的角.②负角:按顺时针方向旋转所形成的角.③零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.3、角的运算设,是任意两个角,为角的相反角.(1):把角的终边旋转角.(时,旋转量为,按逆时针方向旋转;时,旋转量为,按顺时针方向旋转)(2):【即学即练1】(2023秋·高一课时练习)若角α=30°,把角α逆时针旋转20°得到角β,则β=.【答案】50°【详解】因为由逆时针旋转得到,所以.故答案为:知识点02:象限角1、定义:在直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.那么,角的终边在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限.2、象限角的常用表示:第一象限角第二象限角第三象限角或第四象限角或知识点03:轴线角1、定义:轴线角是指以原点为顶点,轴非负半轴为始边,终边落在坐标轴上的角.2、轴线角的表示:①终边落在轴非负半轴②终边落在轴非负半轴③终边落在轴非正半轴或④终边落在轴非正半轴或⑤终边落在轴⑥终边落在轴或⑦终边落在坐标轴知识点04:终边相同的角的集合所有与角终边相同的角为【即学即练2】(2023秋·甘肃定西·高一统考期末)下列各角中,与角终边重合的是(

)A. B. C. D.【答案】C【详解】与角终边重合的角为:,则当时,,故C正确.经检验,其他选项都不正确.故选:C.知识点05:角度制与弧度制的概念1、弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).2、角度与弧度的换算弧度与角度互换公式:,3、常用的角度与弧度对应表角度制弧制度【即学即练3】(2023·全国·高一课堂例题)利用单位圆,写出,,,的圆心角的弧度数.【答案】;;;【详解】在单位圆中,的圆心角的弧长是,那么它对应的弧度数是;的圆心角的弧长是,那么它对应的弧度数是;的圆心角对应的弧度数是;的圆心角对应的弧度数是.知识点06:扇形中的弧长公式和面积公式弧长公式:(是圆心角的弧度数),扇形面积公式:.【即学即练4】(2023秋·湖南·高三湖南省祁东县第一中学校联考阶段练习)已知一扇形的圆心角为,半径为9,则该扇形的面积为(

)A. B. C. D.【答案】A【详解】因为,所以该扇形的面积为.故选:A题型01任意角的概念【典例1】(多选)(2023春·高一课时练习)钟表在我们的生活中随处可见,高一某班的同学们在学习了“任意角和弧度制”后,对钟表的运行产生了浓厚的兴趣,并展开了激烈的讨论,若将时针与分针视为两条线段,则下列说法正确的是(

)A.小赵同学说:“经过了5h,时针转了.”B.小钱同学说:“经过了40min,分针转了.”C.小孙同学说:“当时钟显示的时刻为12:35时,时针与分针所夹的钝角为.”D.小李同学说:“时钟的时针与分针一天之内会重合22次.”【典例2】(2023·全国·高一专题练习)亲爱的考生,我们数学考试完整的时间是2小时,则从考试开始到结束,钟表的分针转过的弧度数为.【变式1】(2023秋·高一课时练习)经过2个小时,钟表的时针和分针转过的角度分别是(

).A.60°,720° B.-60°,-720°C.-30°,-360° D.-60°,720°【变式2】(2023秋·高一课时练习)时钟走了3小时20分,则时针所转过的角的度数为,分针转过的角的度数为.题型02终边相同的角【典例1】(2023春·广西北海·高一统考期末)下列各角中,与角终边相同的是(

)A. B. C. D.【典例2】(多选)(2023·全国·高一课堂例题)与角终边相同的角的集合是(

)A. B.C. D.【变式1】(2023春·山东威海·高一统考期末)下列角的终边与角的终边关于轴对称的是(

)A. B. C. D.【变式2】(2023春·高一课时练习)已知﹣990°<α<﹣630°,且α与120°角终边相同,则α=.题型03终边在某条直线上的角的集合【典例1】(2023·全国·高三专题练习)若角的终边在函数的图象上,试写出角的集合为.【典例2】(2023·全国·高一假期作业)写出终边在如图所示的直线上的角的集合.

【变式1】(2023·全国·高三专题练习)若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线上,则角α的取值集合是【变式2】(2023春·高一课时练习)在直角坐标系中写出下列角的集合:(1)终边在轴的非负半轴上;(2)终边在上.题型04区域角【典例1】(2023·全国·高一课堂例题)用弧度分别表示终边落在如图(1)(2)所示的阴影部分内(不包括边界)的角的集合.(如无特别说明,边界线为实线代表包括边界,边界线为虚线代表不包括边界)

【典例2】(2023秋·高一课时练习)写出终边落在图中阴影区域内的角的集合.(1)

(2)

【变式1】(2023·全国·高三专题练习)集合中的角所表示的范围(阴影部分)是(

)A.

B.

C.

D.

【变式2】(2023秋·高一课时练习)已知角的终边在如图所示的阴影区域内,则角的取值范围是.【变式3】(2023春·河南驻马店·高一校考阶段练习)用弧度表示终边落在如图所示的阴影部分内(不包括边界)的角的集合.

题型05确定角的终边所在的象限【典例1】(2023·全国·高一假期作业)已知为第二象限角,则所在的象限是(

)A.第一或第二象限 B.第二或第三象限C.第二或第四象限 D.第一或第三象限【典例2】(多选)(2023春·江西宜春·高一校考阶段练习)如果α是第三象限的角,那么可能是下列哪个象限的角(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限【典例3】(2023·全国·高三专题练习)已知角第二象限角,且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【变式1】(2023春·江西抚州·高一资溪县第一中学校考期中)已知是第一象限角,那么(

)A.是第一、二象限角 B.是第一、三象限角C.是第三、四象限角 D.是第二、四象限角【变式2】(2023·高一课时练习)若是第三象限角,则所在的象限是(

)A.第一或第二象限; B.第三或第四象限;C.第一或第三象限; D.第二或第四象限.【变式3】(2023·全国·高一课堂例题)若角是第二象限角,试确定角,是第几象限角.题型06弧度制的概念【典例1】(2023春·湖北荆州·高一沙市中学校考阶段练习)自行车的大链轮有88齿,小链轮有20齿,当大链轮逆时针转过一周时,小链轮转过的弧度数是(

)A. B. C. D.【典例2】(2023春·高一课时练习)下列说法正确的是()A.弧度的圆心角所对的弧长等于半径B.大圆中弧度的圆心角比小圆中弧度的圆心角大C.所有圆心角为弧度的角所对的弧长都相等D.用弧度表示的角都是正角【变式1】(2023·全国·高一专题练习)下列与终边相同角的集合中正确的是(

)A. B.C. D.【变式2】(2023秋·高一课时练习)若,则角的终边在(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限题型07角度与弧度的互化【典例1】(多选)(2023·全国·高一课堂例题)下列各角中,与角终边相同的角为(

)A. B. C. D.【典例2】(2023·全国·高一课堂例题)把下列各角从度化为弧度:(1);(2).【变式1】(2023秋·吉林长春·高一长春外国语学校校考期末)设r为圆的半径,弧长为的圆弧所对的圆心角为(

)A. B. C. D.【变式2】(2023秋·天津武清·高三校考阶段练习)化为角度是(

)A. B. C. D.题型08用弧度表示角或范围【典例1】(2023·全国·高一专题练习)写出一个与角终边相同的正角:(用弧度数表示).【典例2】(2023春·江西赣州·高一校联考期中)已知.(1)将写成的形式,并指出它是第几象限角;(2)求与终边相同的角,满足.【变式1】(2023·全国·高一专题练习)将-1485°化成的形式是(

)A. B. C. D.【变式2】(2023秋·江西宜春·高二校考开学考试)已知角.(1)将改写成的形式,并指出是第几象限的角;(2)在区间上找出与终边相同的角.题型09弧长公式【典例1】(2023·全国·高一课堂例题)若扇形的面积是,它的周长是,则扇形圆心角(正角)的弧度数为(

)A. B. C. D.【典例2】(2023秋·江西抚州·高二江西省乐安县第二中学校考开学考试)若扇形的圆心角为,半径.则它的弧长为.【变式1】(2023秋·湖南常德·高二常德市一中校考开学考试)已知扇形面积,半径是1,则扇形的周长是(

)A. B. C. D.【变式2】(2023春·江西吉安·高一校联考期中)已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的周长为.题型10扇形面积公式【典例1】(2023秋·山西晋中·高三介休一中校考阶段练习)圆心角为2的扇形的周长为4,则此扇形的面积为.【典例2】(2023春·上海松江·高一统考期中)建于明朝的杜氏雕花楼被誉为“松江最美的一座楼”,该建筑内有很多精美的砖雕,砖雕是我国古建筑雕刻中很重要的一种艺术形式,传统砖墙精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD截去同心扇形OAB所得部分,已知,弧,弧,则此扇环形砖雕的面积为.

【变式1】(2023秋·黑龙江哈尔滨·高三哈九中校考阶段练习)已知扇形弧长为,圆心角为2,则该扇形面积为(

)A. B. C. D.1【变式2】(2023·全国·高一假期作业)工艺扇面是中国书画的一种常见表现形式.某班级想用布料制作一面如图所示的扇面,已知扇面展开的中心角为,外圆半径为40cm,内圆半径为20cm,那么制作这样一面扇面至少需要用布料为cm2

题型11扇形中的最值问题【典例1】(2023秋·江苏苏州·高一校考阶段练习)已知一个扇形的周长为8,则当该扇形的面积取得最大值时,圆心角大小为(

)A. B. C. D.2【典例2】(2023·全国·高一假期作业)已知一扇形的圆心角为,半径为R,弧长为l.(1)若,,求扇形的弧长l;(2)若扇形面积为16,求扇形周长的最小值,及此时扇形的圆心角.【典例3】(2023·高一课时练习)已知扇形的圆心角是,半径为.(1)若,求扇形的弧长.(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大?最大面积是多少?【变式1】(2023春·宁夏银川·高一宁夏育才中学校考开学考试)已知扇形的圆心角为,所在圆的半径为(1)若,,求扇形的弧长(2)若扇形的周长为,当为多少弧度时,该扇形面积最大并求出最大面积.【变式1】(2023·全国·高一假期作业)已知扇形的圆心角为,所在圆的半径为r.(1)若,求扇形的弧长.(2)若扇形的周长为24,当为多少弧度时,该扇形面积最大?求出最大面积.【变式1】(2023春·湖南衡阳·高一校考阶段练习)已知一扇形的圆心角为,所在圆的半径为R.(1)若,,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长为20cm,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?A夯实基础B能力提升A夯实基础一、单选题1.(2023秋·江西吉安·高二江西省万安中学校考开学考试)下列说法中正确的是(

)A.锐角是第一象限角 B.终边相等的角必相等C.小于的角一定在第一象限 D.第二象限角必大于第一象限角2.(2023·全国·高三专题练习)把表示成的形式,则θ的值可以是(

)A. B. C. D.3.(2023春·江西吉安·高一统考期末)已知角的集合,则在内的角有(

)A.2个 B.3个 C.4个 D.5个4.(2023秋·浙江·高二校联考开学考试)一只红蚂蚁与一只黑蚂蚁在一个圆(半径为1cm)的圆周上爬动,且两只蚂蚁均从点同时逆时针匀速爬动,红蚂蚁以的速度爬行,黑蚂蚁以的速度爬行,则2秒钟后,两只蚂蚁之间的直线距离为(

)A.1 B. C. D.5.(2023秋·贵州贵阳·高三贵阳一中校考期末)已知集合,,则(

)A. B. C. D.6.(2023·全国·高二专题练习)某圆台的侧面展开图为如图所示的扇环(实线部分),已知该扇环的面积为,两段圆弧所在圆的半径分别为1和2,则扇环的圆心角的大小为(

A. B. C. D.7.(2023春·江西抚州·高一校联考期中)扇面书画在中国传统绘画中由来已久,最早关于扇面书画的文献记载,是《王羲之书六角扇》.扇面书画发展到明清时期,折扇扇面画开始逐渐地成为主流,如图,该折扇扇面画的外弧长为48,内弧长为28,且该扇面所在扇形的圆心角约为120°,则该扇面画的面积约为(

)(参考数据:)

A.990 B.495 C.380 D.3008.(2023春·江西宜春·高一江西省宜丰中学校考阶段练习)玉雕在我国历史悠久,玉雕是采用传统的手工雕刻工艺加工生产成的玉雕工艺.某扇环形玉雕(扇环是一个圆环被扇形截得的一部分)尺寸(单位:cm)如图所示,则该玉雕的面积为(

)A. B. C. D.二、多选题9.(2023春·辽宁鞍山·高一校考期末)若角的终边与角的终边关于轴对称,且,则的值可能为(

)A. B. C. D.10.(2023秋·山东临沂·高一校考期末)已知为第四象限角,则可能为(

)A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角三、填空题11.(2023春·上海奉贤·高一校考期中)已知半径为的扇形的圆心角为,则扇形的面积为.12.(2023春·北京·高一北京市第一六一中学校考期中)如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆时,圆与直线l相切于点B,点A运动到点,线段AB的长度为,则点到直线的距离为.四、解答题13.(2023·全国·高一课堂例题)写出终边在下图所示的直线上的角的集合.

14.(2023春·浙江宁波·高一校考阶段练习)已知一扇形的圆心角为,周长为,面积为,弧长为,所在圆的半径为.(1)若,,求扇形的弧长;(2)若,,求扇形的半径和圆心角.B能力提升1.(2023·全国·高三专题练习)古希腊地理学家埃拉托色尼从书中得知,位于尼罗河第一瀑布的塞伊尼(现在的阿斯旺,在北回归线上)记为,夏至那天正午,阳光直射,立杆无影;同样在夏至那天,他所在的城市——埃及北部的亚历山大城记为,测得立杆与太阳光线所成的角约为.他又派人测得,两地的距离km,平面示意图如图,则可估算地球的半径约为(

)()A.km B.km C.km D.km2.(2023春·广东东莞·高一东莞市东莞中学校考阶段练习)数学中处处存在着美,莱洛三角形就给人以对称的美感.莱洛三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论