《4.4.3不同增长函数的差异》教学设计、导学案、同步练习_第1页
《4.4.3不同增长函数的差异》教学设计、导学案、同步练习_第2页
《4.4.3不同增长函数的差异》教学设计、导学案、同步练习_第3页
《4.4.3不同增长函数的差异》教学设计、导学案、同步练习_第4页
《4.4.3不同增长函数的差异》教学设计、导学案、同步练习_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章指数函数与对数函数《4.4.3不同增长函数的差异》教学设计【教材分析】本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。【教学目标与核心素养】课程目标学科素养1.了解指数函数、对数函数、幂函数(一次函数)的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;c.数学运算:运用指数和对数运算分析问题;d.直观想象:指数、对数函数的图像;e.数学建模:运用函数增长差异解决实际问题;【教学重难点】教学重点:函数增长快慢比较的常用方法;教学难点:了解影响函数增长快慢的因素;【教学过程】教学过程设计意图(一)、温故知新三种函数模型的性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴;平行随x增大逐渐近似与x轴x平行随n值而不同增长速度①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=xn(n>0)的增长速度,y=logax(a>1)的增长速度越来越慢②存在一个x0,当x>x0时,有ax>xn>logax(二)问题探究我们看到,一次函数与指数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反映.因此,如果把握了不同函数增长方式的差异,那么就可以根据现实问题的增长情况,选择合适的函数模型刻画其变化规律.下面就来研究一次函数、指数函数和对数函数增长方式的差异.提出问题虽然它们都是增函数,但增长方式存在很大差异,这种差异正是不同类型现实问题具有不同增长规律的反映.我们仍然采用由特殊到一般,由具体到抽象的研究方法.下面就来研究一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域内增长方式的差异.问题探究以函数y=2x与y=2x为例研究指数函数、一次函数增长方式的差异.分析:(1)在区间(-∞,0)上,指数函数y=2x值恒大于0,一次函数y=2x值恒小于0,所以我们重点研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=2xy=2x0100.51.41411221.52.82832442.55.6575386·········(3)观察两个函数图象及其增长方式:结论1:函数y=2x与y=2x有两个交点(1,2)和(2,4)结论2:在区间(0,1)上,函数y=2x的图象位于y=2x之上结论3:在区间(1,2)上,函数y=2x的图象位于y=2x之下结论4:在区间(2,3)上,函数y=2x的图象位于y=2x之上综上:虽然函数y=2x与y=2x都是增函数,但是它们的增长速度不同,函数y=2x的增长速度不变,但是y=2x的增长速度改变,先慢后快.请大家想象一下,取更大的x值,在更大的范围内两个函数图象的关系?思考:随着自变量取值越来越大,函数y=2x的图象几乎与x轴垂直,函数值快速增长,函数y=2x的增长速度保持不变,和y=2x的增长相比几乎微不足道.归纳总结总结一:函数y=2x与y=2x在[0,+∞)上增长快慢的不同如下:虽然函数y=2x与y=2x在[0,+∞)上都是单调递增,但它们的增长速度不同.随着x的增大,y=2x的增长速度越来越快,会超过并远远大于y=2x的增长速度.尽管在x的一定范围内,2x<2x,但由于y=2x的增长最终会快于y=2x的增长,因此,总会存在一个x0,当x>x0时,恒有2x>2x.总结二:一般地指数函数y=ax(a>1)与一次函数y=kx(k>0)的增长都与上述类似.即使k值远远大于a值,指数函数y=ax(a>1)虽然有一段区间会小于y=kx(k>0),但总会存在一个x0,当x>x0时,y=ax(a>1)的增长速度会大大超过y=kx(k>0)的增长速度.跟踪训练1.四个变量y1,y2,y3,y4随变量x变化的数据如表:x151015202530y1226101226401626901y22321024377681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是________.答案:y2[以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关x呈指数型函数变化.故填y2.]分析:(1)在区间(-∞,0)上,对数函数y=lgx没意义,一次函数值恒小于0,所以研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=lgx0不存在01011201.3012301.4773401.6024501.6995601.7786·········以函数y=lgx与为例研究对数函数、一次函数增长方式的差异.(3)观察两个函数图象及其增长方式:总结一:虽然函数y=lgx与在(0,+∞)上都是单调递增,但它们的增长速度存在明显差异.在(0,+∞)上增长速度不变,y=lgx在(0,+∞)上的增长速度在变化.随着x的增大,的图象离x轴越来越远,而函数y=lgx的图象越来越平缓,就像与x轴平行一样温故知新,通过对上节指数、对数和幂函数问题的回顾,提出新的问题,提出研究函数增长差异的问题及研究方法。培养和发展逻辑推理和数学抽象的核心素养。通过画出特殊的指数函数和幂函数的图形,观察归纳出两类函数增长的差异和特点,发展学生逻辑推理,数学抽象、数学运算等核心素养;通过对对数函数的图像与幂函数图像的观察分析归纳总结出两类函增长性的差异和特点,发展学生数学运算、逻辑推理的核心素养;通过画出特殊的指数函数和幂函数的图形,观察归纳出两类函数增长的差异和特点,发展学生逻辑推理,数学抽象、数学运算等核心素养;三、当堂达标1.下列函数中随x的增大而增大且速度最快的是()A.y=exB.y=lnxC.y=x2D.y=e-x【答案】A[结合指数函数,对数函数及一次函数的图象变化趋势可知A正确.]2.能使不等式log2x<x2<2x一定成立的x的取值区间是()A.(0,+∞)B.(2,+∞)C.(-∞,2)D.(4,+∞)【答案】D[当x>4时,log2x<x2<2x,故选D.]3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.【答案】②④[结合图象可知②④正确,故填②④.]4.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1000元,1500元时,应分别选择________方案.【答案】乙、甲、丙[将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]通过练习巩固本节所学知识,巩固对函数增长差异性的认识,增强学生的直观想象、数学抽象、数学运算、逻辑推理的核心素养。四、小结1.由特殊到一般,由具体到抽象研究了一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域上的不同增长方式.2.根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.五、作业1.课时练2.预习下节课内容学生根据课堂学习,自主总结知识要点,及运用的思想方法。注意总结自己在学习中的易错点;《4.4.3不同增长函数的差异》导学案【学习目标】1.了解指数函数、对数函数、线性函数(一次函数)的增长差异.2.理解对数增长、直线上升、指数爆炸。【重点难点】重点:函数增长快慢比较的常用方法;难点:了解影响函数增长快慢的因素;【知识梳理】三种函数模型的性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴——平行随x增大逐渐近似与x——轴平行随n值而不同增长速度①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=xn(n>0)的增长速度,y=logax(a>1)的增长速度越来越慢②存在一个x0,当x>x0时,有ax>x——n>logx增函数;增函数;增函数;y轴;x轴;越来越快;越来越慢;ax>xn>logax【学习过程】【课堂小结】我们看到,一次函数与指数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反映.因此,如果把握了不同函数增长方式的差异,那么就可以根据现实问题的增长情况,选择合适的函数模型刻画其变化规律.下面就来研究一次函数、指数函数和对数函数增长方式的差异.提出问题虽然它们都是增函数,但增长方式存在很大差异,这种差异正是不同类型现实问题具有不同增长规律的反映.我们仍然采用由特殊到一般,由具体到抽象的研究方法.下面就来研究一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域内增长方式的差异.问题探究以函数y=2x与y=2x为例研究指数函数、一次函数增长方式的差异.分析:(1)在区间(-∞,0)上,指数函数y=2x值恒大于0,一次函数y=2x值恒小于0,所以我们重点研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=2xy=2x0100.51.41411221.52.82832442.55.6575386·········(3)观察两个函数图象及其增长方式:结论1:函数y=2x与y=2x有两个交点(1,2)和(2,4)结论2:在区间(0,1)上,函数y=2x的图象位于y=2x之上结论3:在区间(1,2)上,函数y=2x的图象位于y=2x之下结论4:在区间(2,3)上,函数y=2x的图象位于y=2x之上综上:虽然函数y=2x与y=2x都是增函数,但是它们的增长速度不同,函数y=2x的增长速度不变,但是y=2x的增长速度改变,先慢后快.请大家想象一下,取更大的x值,在更大的范围内两个函数图象的关系?思考:随着自变量取值越来越大,函数y=2x的图象几乎与x轴垂直,函数值快速增长,函数y=2x的增长速度保持不变,和y=2x的增长相比几乎微不足道.归纳总结总结一:函数y=2x与y=2x在[0,+∞)上增长快慢的不同如下:虽然函数y=2x与y=2x在[0,+∞)上都是单调递增,但它们的增长速度不同.随着x的增大,y=2x的增长速度越来越快,会超过并远远大于y=2x的增长速度.尽管在x的一定范围内,2x<2x,但由于y=2x的增长最终会快于y=2x的增长,因此,总会存在一个x0,当x>x0时,恒有2x>2x.总结二:一般地指数函数y=ax(a>1)与一次函数y=kx(k>0)的增长都与上述类似.即使k值远远大于a值,指数函数y=ax(a>1)虽然有一段区间会小于y=kx(k>0),但总会存在一个x0,当x>x0时,y=ax(a>1)的增长速度会大大超过y=kx(k>0)的增长速度.跟踪训练1.四个变量y1,y2,y3,y4随变量x变化的数据如表:x151015202530y1226101226401626901y22321024377681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是________.答案:y2[以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.]分析:(1)在区间(-∞,0)上,对数函数y=lgx没意义,一次函数值恒小于0,所以研究在区间(0,+∞)上它们的增长差异(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=lgx0不存在01011201.3012301.4773401.6024501.6995601.7786·········以函数y=lgx与为例研究对数函数、一次函数增长方式的差异.(3)观察两个函数图象及其增长方式:总结一:虽然函数y=lgx与在(0,+∞)上都是单调递增,但它们的增长速度存在明显差异.在(0,+∞)上增长速度不变,y=lgx在(0,+∞)上的增长速度在变化.随着x的增大,的图象离x轴越来越远,而函数y=lgx的图象越来越平缓,就像与x轴平行一样.例如:lg10=1,lg100=2,lg1000=3,lg10000=4;这表明,当x>10,即y>1,y=lgx比相比增长得就很慢了.思考:将y=lgx放大1000倍,将函数y=1000lgx与比较,仍有上面规律吗?先想象一下,仍然有.总结二:一般地,虽然对数函数与一次函数y=kx(k>0)在(0,上都是单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数的增长速度越来越慢.不论a值比k值大多少,在一定范围内,可能会大于kx,但由于的增长会慢于kx的增长,因此总存在一个x0,当x>x0时,恒有.跟踪训练1.函数f(x)=lgx,g(x)=0.3x-1的图象如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).[解](1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lgx.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).【达标检测】1.下列函数中随x的增大而增大且速度最快的是()A.y=exB.y=lnxC.y=x2D.y=e-x【答案】A[结合指数函数,对数函数及一次函数的图象变化趋势可知A正确.]2.能使不等式log2x<x2<2x一定成立的x的取值区间是()A.(0,+∞)B.(2,+∞)C.(-∞,2)D.(4,+∞)【答案】D[当x>4时,log2x<x2<2x,故选D.]3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.【答案】②④[结合图象可知②④正确,故填②④.]4.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1000元,1500元时,应分别选择________方案.【答案】乙、甲、丙[将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]【课堂小结】1.由特殊到一般,由具体到抽象研究了一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域上的不同增长方式.2.根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.《4.4.3不同函数增长的差异》同步练习一基础巩固1.如果某工厂12月份的产量是1月份产量的7倍,那么该工厂这一年中的月平均增长率是()A.711 B.712 C.127-12.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是()3.现有一组实验数据如下:t1.993.004.005.106.12V1.54.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A.V=log2t B.V=log1C.V=t24.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I(单位:安)与电线半径r(单位:毫米)的三次方成正比.若已知电流通过半径为4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为()A.60安 B.240安 C.75安 D.135安5.若a>1,n>0,则当x足够大时,ax,xn,logax的大小关系是.

6.某种细菌在培养过程中,每15分钟分裂1次(由1个分裂成2个),这种细菌由1个分裂成4096个需经过小时.

7.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系8.某文具店出售软皮本和铅笔,软皮本每本2元,铅笔每支0.5元,该店推出两种优惠办法:(1)买一本软皮本赠送一支铅笔;(2)按总价的92%付款.现要买软皮本4本,铅笔若干支(不少于4支),若购买x支铅笔,付款为y元,试分别建立两种优惠办法中y与x之间的函数关系式,并说明使用哪种优惠办法更合算?能力提升9.若x∈(0,1),则下列结论正确的是()A.2x>x12>lgx B.2xC.x12>2x>lgx D.lgx>x10.如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t(单位:月)的近似函数关系:y=at(t≥0,a>0,且a≠1).有以下叙述:①第4个月时,剩留量会低于15;②每月减少的有害物质量都相等;③若剩留量为12,14,18所经过的时间分别是t1,t2,t3,其中所有正确的叙述是.

11.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动.某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上年增加9%.你觉得哪个方案较好?素养达成12.画出函数f(x)=x与函数g(x)=14x24.4.3不同函数增长的差异答案解析基础巩固1.如果某工厂12月份的产量是1月份产量的7倍,那么该工厂这一年中的月平均增长率是()A.711 B.712 C.127-1【答案】D【解析】设月平均增长率为x,1月份的产量为a,则有a(1+x)11=7a,则1+x=117,故x=112.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是()【答案】D【解析】设该林区的森林原有蓄积量为a,由题意知ax=a(1+0.104)y,即y=log1.104x(x≥1),所以y=f(x)的图象大致为D中图象.3.现有一组实验数据如下:t1.993.004.005.106.12V1.54.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A.V=log2t B.V=log12tC.V=t2【答案】C【解析】当t=4时,选项A中的V=log24=2,选项B中的V=log1选项C中的V=42选项D中的V=2×4-2=6,故选C.4.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I(单位:安)与电线半径r(单位:毫米)的三次方成正比.若已知电流通过半径为4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为()A.60安 B.240安 C.75安 D.135安【答案】D【解析】设比例系数为k,则电流强度I=kr3,由已知可得当r=4时,I=320,故有320=43k,解得k=32064=5,所以I=5r3,则当r=3时,I=5×33=135(安5.若a>1,n>0,则当x足够大时,ax,xn,logax的大小关系是.

【答案】logax<xn<ax【解析】由三种函数的增长特点可知,当x足够大时,总有logax<xn<ax.6.某种细菌在培养过程中,每15分钟分裂1次(由1个分裂成2个),这种细菌由1个分裂成4096个需经过小时.

【答案】3【解析】设1个细菌分裂x次后有y个细菌,则y=2x.令2x=4096=212,则x=12,即需分裂12次,需12×15=180(分钟),即3小时.7.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系【答案】函数f(x)与g(x)的图象如右.根据图象可得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).【解析】函数f(x)与g(x)的图象如右.根据图象可得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).8.某文具店出售软皮本和铅笔,软皮本每本2元,铅笔每支0.5元,该店推出两种优惠办法:(1)买一本软皮本赠送一支铅笔;(2)按总价的92%付款.现要买软皮本4本,铅笔若干支(不少于4支),若购买x支铅笔,付款为y元,试分别建立两种优惠办法中y与x之间的函数关系式,并说明使用哪种优惠办法更合算?【答案】见解析【解析】由优惠办法(1)得到y与x的函数关系式为y=2×4+0.5(x-4)=0.5x+6(x≥4,且x∈N).由优惠办法(2)得到y与x的函数关系式为y=(0.5x+2×4)×92%=0.46x+7.36(x≥4,且x∈N).令0.5x+6=0.46x+7.36,解得x=34,且当4≤x<34时,0.5x+6<0.46x+7.36,当x>34时,0.5x+6>0.46x+7.36.即当购买铅笔少于34支(不少于4支)时,用优惠办法(1)合算;当购买铅笔多于34支时,用优惠办法(2)合算;当购买铅笔34支时,两种优惠办法支付的总钱数是相同的,即一样合算.能力提升9.若x∈(0,1),则下列结论正确的是()A.2x>x12>lgx B.2x>lgx>C.x12>2x>lgx D.lgx>x【答案】A【解析】在同一平面直角坐标系中分别作出函数y=2x,y=x12如图所示.由图可知,当x∈(0,1)时,2x>x110.如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t(单位:月)的近似函数关系:y=at(t≥0,a>0,且a≠1).有以下叙述:①第4个月时,剩留量会低于15;②每月减少的有害物质量都相等;③若剩留量为12,14,18所经过的时间分别是t1,t2,t3,其中所有正确的叙述是.

【答案】①③【解析】由图象可得,当t=2时,y=49,即a2=4解得a=23.故y=2所以当t=4时,有害物质的剩余量为y=234第一个月的减少量为1-23第二个月的减少量为23③由已知23t1=12,23t2=14,211.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动.某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上年增加9%.你觉得哪个方案较好?【答案】见解析【解析】(方案一)5年后树木面积是10+1×5=15(万平方米).(方案二)5年后树木面积是10(1+9%)5≈15.386(万平方米).∵15.386>15,∴方案二较好.素养达成12.画出函数f(x)=x与函数g(x)=14x2【答案】见解析【解析】函数f(x)与g(x)的图象如下.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).《4.4.3不同增长函数的差异》同步练习二一、选择题1.有一组实验数据如下表所示:x12345y1.55.913.424.137下列所给函数模型较适合的是()A.y=logax(a>1) B.y=ax+b(a>1)C.y=ax2+b(a>0) D.y=logax+b(a>1)2.若,则下列结论正确的是()A. B.C. D.3.三个变量y1,y2,y3随着变量x的变化情况如表:x1357911y15135625171536356655y2529245218919685177149y356.106.616.957.207.40则与x呈对数型函数、指数型函数、幂函数型函数变化的变量依次是()A.y1,y2,y3 B.y2,y1,y3C.y3,y2,y1 D.y3,y1,y24.下面对函数f(x)=logx,g(x)=与h(x)=x-12在区间(0,+∞)上的衰减情况说法正确的是()A.f(x)衰减速度越来越慢,g(x)衰减速度越来越快,h(x)衰减速度越来越慢B.f(x)衰减速度越来越快,g(x)衰减速度越来越慢,h(x)衰减速度越来越快C.f(x)衰减速度越来越慢,g(x)衰减速度越来越慢,h(x)衰减速度越来越慢D.f(x)衰减速度越来越快,g(x)衰减速度越来越快,h(x)衰减速度越来越快5.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)=x2 B.f2(x)=4x C.f3(x)=log2x D.f4(x)=2x6.某林区的森林蓄积量每年比上一年平均增长,要增长到原来的倍,需经过年,则函数的图象大致为A. B. C. D.二、填空题7.函数y=x2与函数y=xlnx在区间(0,+∞)上增长较快的一个是________.8.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后显示的图象如图所示.现给出下列说法:①前5min温度增加的速度越来越快;②前5min温度增加的速度越来越慢;③5min以后温度保持匀速增加;④5min以后温度保持不变.其中正确的说法是________.(填序号)9.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m,从2013年起,过x年后湖水量y与x的函数关系是________.10.如图所示是某受污染的湖泊在自然净化过程中某种有害物质的剩留量y与净化时间t(月)的近似函数关系:y=at(t≥0,a>0且a≠1)的图象.有以下叙述:①第4个月时,剩留量就会低于;②每月减少的有害物质量都相等;③若剩留量为,,时,所经过的时间分别是t1,t2,t3,则t1+t2=t3.其中所有正确叙述的序号是________.三、解答题11.函数f(x)=1.1x,g(x)=lnx+1,h(x)=x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).12.每年的3月12日是植树节,全国各地在这一天都会开展各种形式的植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,现有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上一年增加9%.哪个方案较好?4.4.3不同增长函数的差异答案解析一、选择题1.有一组实验数据如下表所示:x12345y1.55.913.424.137下列所给函数模型较适合的是()A.y=logax(a>1) B.y=ax+b(a>1)C.y=ax2+b(a>0) D.y=logax+b(a>1)【答案】C【解析】通过所给数据可知y随x增大,其增长速度越来越快,而A,D中的函数增长速度越来越慢,而B中的函数增长速度保持不变,故选C.2.若,则下列结论正确的是()A. B.C. D.【答案】A【解析】如图所示,结合,及的图象易知,当时,,本题选择A选项.3.三个变量y1,y2,y3随着变量x的变化情况如表:x1357911y15135625171536356655y2529245218919685177149y356.106.616.957.207.40则与x呈对数型函数、指数型函数、幂函数型函数变化的变量依次是()A.y1,y2,y3 B.y2,y1,y3C.y3,y2,y1 D.y3,y1,y2【答案】C【解析】由指数函数、对数函数、幂函数的增长速率比较,指数函数增长最快,对数函数增长最慢,由题中表格可知,是幂函数,是指数函数,是对数函数,故选C。4.下面对函数f(x)=logx,g(x)=与h(x)=x-12在区间(0,+∞)上的衰减情况说法正确的是()A.f(x)衰减速度越来越慢,g(x)衰减速度越来越快,h(x)衰减速度越来越慢B.f(x)衰减速度越来越快,g(x)衰减速度越来越慢,h(x)衰减速度越来越快C.f(x)衰减速度越来越慢,g(x)衰减速度越来越慢,h(x)衰减速度越来越慢D.f(x)衰减速度越来越快,g(x)衰减速度越来越快,h(x)衰减速度越来越快【答案】C【解析】画出三个函数的图像如下图,由图像可知选C.因为三个函数都是下凸函数。选C.【点睛】当图像是一条直线的减函数时,是匀减速函数。当图像为上凸的增函数时减小速度是越来越快的。当图像为下凸的减函数时(如本题)减小速度是越来越慢的。5.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)=x2 B.f2(x)=4x C.f3(x)=log2x D.f4(x)=2x【答案】D【解析】由函数的增长趋势可知,指数函数增长最快,所以最终最前面的具有的函数关系为,故选D。6.某林区的森林蓄积量每年比上一年平均增长,要增长到原来的倍,需经过年,则函数的图象大致为A. B. C. D.【答案】B【解析】根据题意,函数解析式为y=1.104x,(x>0)函数为指数函数,底数1.104>1递增,选B二、填空题7.函数y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论