《3.1.2 函数的表示法》课件与导学案_第1页
《3.1.2 函数的表示法》课件与导学案_第2页
《3.1.2 函数的表示法》课件与导学案_第3页
《3.1.2 函数的表示法》课件与导学案_第4页
《3.1.2 函数的表示法》课件与导学案_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3章

函数的概念与性质3.1.2函数的表示法函数的表示法在初中我们已经接触过函数的三种表示法:解析法、列表法和图像法.【1】解析法,就是用数学表达式表示两个变量之间的对应关系,如y=2x+3【2】列表法,就是列出表格表示两个变量之间的对应关系.【3】图像法,就是画出函数图像来表示两个变量之间的对应关系.用什么方法来表示函数呢?用列表法,不用计算,看表就知道函数值用解析法,便于研究函数性质用图像法,容易表示出函数的变化情况函数的表示法【例题】某种笔记本的单价是5元,买m(m∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法来表示函数y=f(m).【解析法】y=5m,m∈{1,2,3,4,5}【列表法】函数可以表示如下表:笔记本数m12345钱数y510152025【图像法】函数图像可以表示如图:252015105012345my【1】解析法必须标明函数的定义域函数的表示法在用三种方法表示函数时要注意:【2】列表法必须罗列出所有的自变量与函数值之间的对应关系【3】图像法必须搞清楚函数图像是“点”还是“线”

并不是所有函数都能用解析法表示,如某地一年中每天的最高气温是日期的函数,该函数就不能用解析法表示;也不是所有函数都可以用列表法表示,如函数f(x)=x.分段函数【题】画出函数y=|x|的图像【解】由绝对值的概念,有y=-x,x<0,x,x≥0.画出图像如图:

像这样的函数,叫做分段函数.分段函数一般在实际问题中出现的比较多,例如出租车的计费,个人所得税的计算等等.在自变量的不同取值区间,有不同对应关系的函数叫做分段函数.(1)分段函数是一个函数,而不是几个函数,处理分段函数的问题时,首

先要明确自变量的取值在哪个区间,从而选取相应的对应关系.(2)分段函数在书写的时候左边用大括号把几个对应关系括在一起,在每

段对应关系表达式的后面用小括号写上相应的取值范围.(3)分段函数的定义域是所有自变量取值区间的并集,只能写成一个集合

的形式;值域是各段函数在对应自变量取值范围内值域的并集.分段函数分段函数几种常见的分段函数:(1)符号函数:

(2)含绝对值符号的函数:

(3)自定义函数:

(3)取整函数:

如图,把直截面半径为25的圆柱形木头锯成直截面为矩形的木料,如果矩形的一边长为t,面积为W,把W表示成t的函数.【解】因为圆的直径是25×2=50,矩形的一边长是t,25t所以与它相邻的另一边长就是

矩形的面积

又因为矩形的边长小于圆的直径,所以0<t<50

画出函数【解法一】由绝对值的概念可知,所以函数的图像如图所示:

的图像.

【解法二】(翻折法)先画出函数

的图像,然后把图像中位于横轴下方的部分翻转到上方即可.

123412函数的实际应用【例题】下表是卢老师所在的初中某班三名同学在初三学年度6次历史测试的成绩

及班级平均分表.请你对这三位同学在初三学年的历史学习情况做一个分析.【分析】从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学

的成绩变化情况.如果将每位同学的成绩和测试序号之间的函数关系分别用

图像表示出来,就可以直观的看到他们成绩变化的情况.函数的实际应用【例题】某市“招手即停”公共汽车的票价按下列规则制定(1)5km以内(含5km),票价2元;(2)5km以上,每增加5km,票价增加1元(不足5km按5km算)

如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,

并画出图像.【解】设票价为W元,里程为t千米,由题意可

写出解析式为:

图像如图:

510152054321·····复合函数【概念】设函数的定义域为A,值域为B,函数的定义域为C,

值域为D.如果B∩C≠∅,那么对于B∩C内的任意一个经过,有唯一

确定的与之对应.则变量和之间通过变量形成一种函数关系,

这种函数成为复合函数.记为.其中为自变量,为中间

变量,为因变量(函数).例如,如果,,那么就有

【1】已知一次函数满足,求的解析式.

【解】由题意设

所以

解得

所以

【复合待定系数法】常考题型分析【1】已知,求【换元法】由题意令,则所以【换元法和配凑法】

【配凑法】因为

所以

常考题型分析【1】已知函数满足,求的解析式.【解】在已知等式中,将换成,得与已知方程联立,得【已知中含有,求】

,消去

常考题型分析

【2】已知,其中,求的解析式.【解】在原式中用替换,得与已知方程联立,得,【已知中含有,求】

常考题型分析

消去,得

《3.1函数的概念及其表示》导学案第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论