内部结构与工作方式及600W交错式双相转移模式PFC转换器_第1页
内部结构与工作方式及600W交错式双相转移模式PFC转换器_第2页
内部结构与工作方式及600W交错式双相转移模式PFC转换器_第3页
内部结构与工作方式及600W交错式双相转移模式PFC转换器_第4页
内部结构与工作方式及600W交错式双相转移模式PFC转换器_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8253的内部结构和工作方式8253具有3个独立的计数通道,采用减1计数方式。在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。当计数脉冲是已知周期的时钟信号时,计数就成为定时。一、8253内部结构8253芯片有24条引脚,封装在双列直插式陶瓷管壳内。1.数据总线缓冲器数据总线缓冲器与系统总线连接,8位双向,与CPU交换信息的通道。这是8253与CPU之间的数据接口,它由8位双向三态缓冲存储器构成,是CPU与8253之间交换信息的必经之路。2.读/写控制读/写控制分别连接系统的IOR#和IOW#,由CPU控制着访问8253的内部通道。接收CPU送入的读/写控制信号,并完成对芯片内部各功能部件的控制功能,因此,它实际上是8253芯片内部的控制器。A1A0:端口选择信号,由CPU输入。8253内部有3个独立的通道和一个控制字寄存器,它们构成8253芯片的4个端口,CPU可对3个通道进行读/写操作3对控制字寄存器进行写操作。这4个端口地址由最低2位地址码A1A0来选择。如表9.3.1所示。3.通道选择(1)CS#——片选信号,由CPU输入,低电平有效,通常由端口地址的高位地址译码形成。

(2)RD#、WR#——读/写控制命令,由CPU输入,低电平有效。RD#效时,CPU读取由A1A0所选定的通道内计数器的内容。WR#有效时,CPU将计数值写入各个通道的计数器中,或者是将方式控制字写入控制字寄存器中。CPU对8253的读/写操作如表9.3.2所示。4.计数通道0~2每个计数通道内含1个16位的初值寄存器、减1计数器和1个16位的(输出)锁存器。8253内部包含3个功能完全相同的通道,每个通道内部设有一个16位计数器,可进行二进制或十进制(BCD码)计数。采用二进制计数时,最大计数值是FFFFH,采用BCD码计数时。最大计数值是9999。与此计数器相对应,每个通道内设有一个16位计数值锁存器。必要时可用来锁存计数值。当某通道用作计数器时,应将要求计数的次数预置到该通道的计数器中、被计数的事件应以脉冲方式从CLK端输入,每输入一个计数脉冲,计数器内容减“1”,待计数值计到“0”。OUT端将有输出。表示计数次数到。当某个通道用作定时器时。由CLK输入一定频率的时钟脉冲。根据要求定时的时间长短确定所需的计数值。并预置到计数器中,每输入一个时钟脉冲,计数器内容减“1”,待计数值计到“0”。OUT将有输出,表示定时时间到。允许从CLK输入的时钟频在1~2MHz范围内。因此,任一通道作计数器用或作定时器用,其内部操作完全相同,区别仅在于前者是由计数脉冲进行减“1”计数。而后者是内时钟脉冲进行减“1”计数。作计数器时,要求计数的次数可直接作为计数器的初值预置到减“1”计数器中。作定时器时,计数器的初值即定时系数应根据要求定时的时间进行如下运算才能得到:

定时系数=需要定时的时间/时钟脉冲周期

①设置通道:向方式控制字寄存器端口写入方式选择控制字,用于确定要设置的通道及工作方式;

②计数/定时:向通道写入计数值,启动计数操作;

③读取当前的计数值:向指定通道读取当前计数器值时,8253将计数器值存入锁存器,从锁存器向外提供当前的计数器值,计数器则继续作计数操作。

④计数到:当计数器减1为0时,通过引脚OUTi向外输出“到”的脉冲信号。

计数初值输入存放在初值寄存器中,计数开始或重装入时被复制到计数器中。

锁存器在非锁存状态,其值随计数器的变化而变化;一旦锁存了计数器的当前值,直到锁存器值被读取后才能解除锁存状态。5.方式选择控制字二、8253的通道工作方式8253中各通道可有6种可供选择的工作方式,以完成定时、计数或脉冲发生器等多种功能。8253的各种工作方式如下:1.方式0:计数结束则中断工作方式0被称为计数结束中断方式,它的定时波形如图9.3.4所示。当任一通道被定义为工作方式0时,OUTi输出为低电平;若门控信号GATE为高电平,当CPU利用输出指令向该通道写入计数值WR#有效时,OUTi仍保持低电平,然后计数器开始减“1”计数,直到计数值为“0”,此刻OUTi将输出由低电平向高电平跳变,可用它向CPU发出中断请求,OUTi端输出的高电平一直维持到下次再写入计数值为止。在工作方式0情况下,门控信号GATE用来控制减“1”计数操作是否进行。当GATE=1时,允许减“1”计数;GATE=0时,禁止减“1”计数;计数值将保持GATE有效时的数值不变,待GATE重新有效后,减“1”计数继续进行。

显然,利用工作方式0既可完成计数功能,也可完成定时功能。当用作计数器时,应将要求计数的次数预置到计数器中,将要求计数的事件以脉冲方式从CLKi端输入,由它对计数器进行减“1”计数,直到计数值为0,此刻OUTi输出正跳变,表示计数次数到。当用作定时器时,应把根据要求定时的时间和CLKi的周期计算出定时系数,预置到计数器中。从CLKi,输入的应是一定频率的时钟脉冲,由它对计数器进行减“1”计数,定时时间从写入计数值开始,到计数值计到“0”为止,这时OUTi输出正跳变,表示定时时间到。

有一点需要说明,任一通道工作在方式0情况下,计数器初值一次有效,经过一次计数或定时后如果需要继续完成计数或定时功能,必须重新写入计数器的初值。

2.方式1:单脉冲发生器工作方式1被称作可编程单脉冲发生器,其定义波形如图9.3.5。进入这种工作方式,CPU装入计数值n后OUTi输出高电平,不管此时的GATE输入是高电平还是低电平,都不开始减“1”计数,必须等到GATE由低电平向高电平跳变形成一个上升沿后,计数过程才会开始。与此同时,OUTi输出由高电平向低电平跳变,形成了输出单脉冲的前沿,待计数值计到“0”,OUTi输出由低电平向高电平跳变,形成输出单脉冲的后沿,因此,由方式l所能输出单脉冲的宽度为CLKi周期的n倍。如果在减“1”计数过程中,GATE由高电平跳变为低电乎,这并不影响计数过程,仍继续计数;但若重新遇到GATE的上升沿,则从初值开始重新计数,其效果会使输出的单脉冲加宽,如教材图9-22(b)中的第2个单脉冲。

这种工作方式下,计数值也是一次有效,每输入一次计数值,只产生一个负极性单脉冲。

3.方式2:速率波发生器工作方式2被称作速率波发生器,其定时波形如图9.3.6所示。进入这种工作方式,OUTi输出高电平,装入计数值n后如果GATE为高电平,则立即开始计数,OUTi保持为高电平不变;待计数值减到“1”和“0”之间,OUTi将输出宽度为一个CLKi周期的负脉冲,计数值为“0”时,自动重新装入计数初值n,实现循环计数,OUTi将输出一定频率的负脉冲序列,其脉冲宽度固定为一个CLKi周期,重复周期为CLKi周期的n倍。如果在减“1”计数过程中,GATE变为无效(输入0电平),则暂停减“1”计数,待GATE恢复有效后,从初值n开始重新计数。这样会改变输出脉冲的速率。

如果在操作过程中要求改变输出脉冲的速率,CPU可在任何时候,重新写人新的计数值,它不会影响正在进行的减“1”计数过程,而是从下一个计数操作用期开始按新的计数值改变输出脉冲的速率。

4.方式3:方波发生器工作方式3被称作方波发生器,其定时波型如图9.3.7所示。任一通道工作在方式3,只在计数值n为偶数,则可输出重复周期为n、占空比为1:1的方波。进入工作方式3,OUTi输出低电平,装入计数值后,OUTi立即跳变为高电平。如果当GATE为高电平,则立即开始减“1”计数,OUTi保持为高电平,若n为偶数,则当计数值减到n/2时,OUTi跳变为低电平,一直保持到计数值为“0”,系统才自动重新置入计数值n,实现循环计数。这时OUTi端输出的周期为n×CLKi周期,占空比为1:1的方波序列;若n为奇数,则OUTi端输出周期为n×CLKi周期,占空比为((n+1)/2)/((n-1)/2)的近似方波序列。

如果在操作过程中,GATE变为无效,则暂停减“1”计数过程,直到GATE再次有效,重新从初值n开始减“l”计数。

如果要求改变输出方波的速率,则CPU可在任何时候重新装入新的计数初值n,并从下一个计数操作周期开始改变输出方波的速率。

5.方式4:软件触发方式计数工作方式4被称作软件触发方式,其定时波形如图9.3.8所示。进入工作方式4,OUTi输出高电平。装入计数值n后,如果GATE为高电平,则立即开始减“1”计数,直到计数值减到“0”为止,OUTi输出宽度为一个CLKi周期的负脉冲。由软件装入的计数值只有一次有效,如果要继续操作,必须重新置入计数初值n。如果在操作的过程中,GATE变为无效,则停止减“1”计数,到GATE再次有效时,重新从初值开始减“1”计数。显然,利用这种工作方式可以完成定时功能,定时时间从装入计数值n开始,则OUTi输出负脉冲(表示定时时间到),其定时时间=n×CLK周期。这种工作方式也可完成计数功能,它要求计数的事件以脉冲的方式从CLKi输入,将计数次数作为计数初值装入后,由CLKi端输入的计数脉冲进行减“1”计数,直到计数值为“0”,由OUTt端输出负脉冲(表示计数次数到)。当然也可利用OUTj向CFU发出中断请求。因此工作方式4与工作方式0很相似,只是方式0在OUTi端输出正阶跃信号、方式4在OUTi端输出负脉冲信号。

6.方式5:硬件触发方式计数工作方式5被称为硬件触发方式,其定时波形如图9.3.9所示。进入工作方式5,OUTi输出高电平,硬件触发信号由GATE端引入。因此,开始时GATE应输入为0,装入计数初值n后,减“1”计数并不工作,一定要等到硬件触发信号由GATE端引入一个正阶跃信号,减“1”计数才会开始,待计数值计到“0”,OUTi将输出负脉冲,其宽度固定为一个CLKi周期,表示定时时间到或计数次数到。这种工作方式下,当计数值计到“0”后,系统将自动重新装入计数值n,但并不开始计数,一定要等到由GATE端引入的正跳沿,才会开始进行减“1”计数,因此这是一种完全由GATE端引入的触发信号控制下的计数或定时功能。如果由CLKi输入的是一定频率的时钟脉冲,那么可完成定时功能,定时时间从GATE上升沿开始,到OUTi端输出负脉冲结束。如果从CLKi端输入的是要求计数的事件,则可完成计数功能,计数过程从GATE上升沿开始,到OUTi输出负脉冲结束。GATE可由外部电路或控制现场产生,故硬件触发方式由此而得名。

如果需要改变计数初值,CPU可在任何时候用输出指令装入新的计数初值m,它将不影响正在进行的操作过程,而是到下一个计数操作周期才会按新的计数值进行操作。

从上述各工作方式可看出,GATE作为各通道的门控信号,对于各种不同的工作方式,它所起的作用各不相同。在8253的应用中,必须正确使用GATE信号,才能保证各通道的正常操作。7.读取计数器的当前值⑴直接读计数器:输出锁存器在非锁存状态会跟随计数器计数的变化而变化,直接读计数器是从锁存器得到计数器的当前值。但由于计数器处于工作状态,读出值不一定能稳定。

⑵先锁存再读取:①通过方式选择控制字对指定通道(SC1、SC0)的计数值锁入锁存器(RL1RL0=00),锁存器一旦锁存了当前计数值,就不再随计数器变化直到被读取。②读计数器通道(有锁存器)。600W交错式双相转移模式PFC转换器—PR7351引言PR735是一款交错式双相转移模式PFC转换器,其在电流高达1.5A的85VRMS~265VRMS交流输入电源下工作时,可提供400V的固定输出。该参考设计需要一个100mA、15V的额外偏置电压来为UCC28060器件供电。PR735设计旨在通过展示典型离线高功耗应用中UCC28060的性能来突出说明UCC28060的特性。UCC28060包含了诸如NaturalInterleaving™的创新性特性,并且可以用于多种应用,详情请参见下面的2.1章节。2描述PR735由两块电路板组成:一块是含有磁性元件、晶体管以及其他高功率组件的电源电路板;另一块是由UCC28060集成电路以及各种组件和滤波电路组成的控制器电路板。该控制器电路板通过一个排针(header)与电源电路板相连接,当PFC输出处于稳压状态时,控制器电路板上的J1.A状态LED就会发光指示。如欲了解有关器件运行的更多详情,请参见UCC28060产品说明书。警告由于该电路上有高压,非经验丰富的电源专业人士切勿进行该设计工作。2.1应用范围:LCD、等离子以及DLP电视计算机电源入门级服务器2.2特性:85VRMS~265VRMS输入电压范围400V固定输出1.5A直流恒定状态输出电流采用了TINaturalInterleaving™专利技术相位管理功能提高了轻负载时的效率掉电保护功能3PR735规范3.1电气特性表1PR735的电气与性能规范参数最小值标准值最大值单位输入电压(交流线路)85265VRMS线路频率4763Hz输出电压400V输出电流01.5A满负载效率92%最大负载时的功率因数0.99-控制器电路板的偏置电压1421V控制器电路板的电流100mA输出功率0600W3.2散热要求该参考设计可在环境温度为25℃下工作,功率高达600W,而无需外部制冷。用户应确保所有的高功率组件(MOSFET、整流器等)散热正常以免温度过高。为了降低高输出功率级别时组件的热应力可以使用外部制冷。4原理图下页的原理图说明了PR735的参考设计。为了清楚起见,分别在单独的页面上对功率级和控制器电路进行了说明。4.1功率级电路图1PR735功率级注:仅供参考。如欲了解具体的值,请参见表2材料清单。测试点仅限于评估,并非是转换器运行所必须的。4.2控制器电路图2PR735控制器电路注:仅供参考。如欲了解具体的值,请参见表3材料清单。5PR735典型的性能数据图3到图5显示了PR735的典型性能数据。由于实际性能数据会受到测量技术和环境变化的影响,因此这些曲线仅供参考,并且可能与实地测量值会有所不同。5.1效率下图说明了PR735在低线压和高线压条件下整个输出功率范围内的效率。图3在85VRMS和265VRMS时的效率5.2230VRMS输入时的电流谐波PR735含有非常符合EN61000标准的极低的电流谐波含量。大多数谐波含量都被包含在可导致低THD的基本谐波中。下图举例说明了PR735的电流谐波以及EN61000标准,以进行比较。图4230VRMS输入时的PR735谐波5.3最大负载时的输出电压纹波从下图可以看出输出电压纹波大约为10V(峰至峰)。图5PR735输出电压纹波(5V/DIV、交流耦合)5.4输入纹波电流消除下图举例说明了PR735转换器在各个线路周期不同输入电压时的输入纹波消除情况。M4振荡器信号为输入电流,其为两个电感电流的相加值。图685VRMS(线路电压峰值)输入电压时PR735的电感和输入纹波电流图785VRMS(线路电压峰值的一半)输入电压时PR735的电感和输入纹波电流图8265VRMS(线路电压峰值)输入电压时PR735的电感和输入纹波电流图9265VRMS(线路电压峰值的一半)输入电压时PR735的电感和输入纹波电流图1085VRMS输入、POUT=300W时PR735的电感和输入纹波电流图11265VRMS输、POUT=600W时PR735的电感和输入纹波电流5.5启动特性下图说明了PR735转换器在不同输入电压和输出功率条件下的启动特性。图12VIN=85VRMS、POUT=600W时PR735的启动特性图13VIN=265VRMS、POUT=0W时PR735的启动特性5.6掉电保护下图展示了UCC280660的掉电保护特性。如果VIN交流电压下降至掉电阈值电压以下,则该转换器在掉电滤波时间(通常为440ms)以后将停止转换。图1485VRMS时的PR735掉电保护图15265VRMS时的PR735掉电保护6EVM装配图与布局下图说明了PR735印刷电路板的设计。控制器电路板由一个单层PCB组成,所有的组件都安装在电路板的顶端;电源电路板由一个单层PCB组成,布线位于电路板的底部而组件安装在电路板的顶端。图16PR735控制器电路板布局(顶部视图)图17PR735控制器电路板部件放置(顶部视图)图18PR735功率级底层布局(顶部视图)图19PR735功率级部件位置(顶部视图)7功率级与控制器级材料清单7.1功率级材料清单表2列出了按照图1所示原理图配置的EVM组件。表2UCC28060(PR735)功率级材料清单参考设计数量描述厂商部件号C1、C22电容、220μF、450V、electKMQsnapUnitedChemi-conE30KSMQ451VSN221MRC31薄膜电容、0.047μF、275VAC松下ECQ-U2A474MLD11整流器桥接、GPP、600V、15ADiodesGBJ1506-FD2、D32超快二极管、8A、600V安森美MUR860FB11保险丝夹、5×20mmWickmann520J11连续排母(Straightsocket)、10P、1排3M929850-01-10-10J2、J3、J5、J64连接器、接线柱、绝缘Johnson111-0703-001J71终端模块、2引脚、6A、3.5mmOSTED555/2DSJP1、JP2、JP4、JP7、JPL1、JPL2、JPQ、JPQ28跳线、过孔、0.035STDSTDL1、L22电感、E磁芯FerroxcubeE41/17/12Q1MOSFET、N通道、600V、31A英飞凌IPP60R099CSQ2MOSFET、N通道、600V、31A英飞凌IPP60R099CSR1、R22电阻、10.0kΩ、1/4W、1%、1206StdStdRG1、RG22电阻、5.10Ω、1/4W、1%、1206StdStdRS21电阻、0.005Ω、1W、1%、2512松下ERJ-M1WSF5M0URT11电流限制器浪涌、4.7Ω、20%EpcosB57238S479MTP、TP2、TP3、TP4、TP9、TP106引脚、过孔、用于0.062PCBVectorK24A/M7.2控制器级材料清单表3列出了按照图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论