




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工程力学第六章弯曲内力
§6.1
弯曲的概念和实例第四种基本变形,也是最复杂最重要的基本变形!!!弯曲:外力(偶矩)垂直于杆轴心线,使得轴心线由直变曲。梁(beams):承受横向载荷,以弯曲为主要变形的杆件。弯曲实例工厂厂房的天车大梁:FF火车的轮轴:FFFF楼房的横梁:阳台的挑梁:单杠,双杠,跳板,跳台etcAB对称轴纵向对称平面梁变形后的轴线与外力在同一平面内梁的轴线FRBF1F2FRA§6.2
梁的计算简图(3)支座的类型(1)梁的简化通常取梁的轴线来代替梁(2)载荷类型集中力集中力偶分布载荷
滚动铰支座
(rollersupport)FRAAAAA固定铰支座(pinsupport)固定端(fixedend)AAAFRAyAFRAxFRyFRxM
简支梁simplebeam,simplysupportedbeamABP2P1YAYBXA静定梁的种类悬臂梁cantileverbeamABP1P2MAYAXAP1P2
外伸梁overhangingbeamABCYAYBXA超静定?跨,跨度
起重机大梁为No.25a工字钢,如图所示,梁长L=10m,单位长度的重量为38.105kN/m,起吊重物的重量为100kN,试求起重机大梁的计算简图。q=38.105kN/mF=100kN§6.3
梁的弯曲内力(剪力和弯矩)第一个问题,为什么跟以往不同,是两个?看个例题。例6-1简支梁如图,已知F,a,l。
求:距A端m-m截面上内力。BAlFaxmmFAyFAxFBABF解:①求外力(支座反力)FAx
=0以后可省略不求。
ABFFAyFAxFBmmx②求任意截面m-m内力FsMMFs∴梁的弯曲内力:-剪力,-弯矩。FAyACFBFC研究对象:m-m截面的左段:若研究对象取m-m
截面的右段:结果与前述一致。问题来了,到底?从而引出弯曲内力的符号规定:①剪力Fs:②弯矩M:Fs(+)Fs(+)Fs(-)Fs(-)M(-)M(-)M(+)M(+)设正法!!!例6-2求梁1-1、2-2截面的内力。解:(1)确定支座反力
(2)取1-1截面左半:取2-2截面右半:FA1.2kN/m0.8kNAB1.5m3m2m1.5m11221.5mFAFB解:例6-3求图示梁中指定截面上的剪力和弯矩。(1)求支座反力FRA=4kNFRB=-4kNC12M(2)求1-1截面的内力(3)求2-2截面的内力B1m2.5m10kN·mAC12FRAFRB§6.4
剪力、弯矩方程、图一般地,内力与截面位置坐标x间,有函数关系式:其图形表示:剪力方程弯矩方程剪力图的图线表示弯矩图的图线表示现在知道不同截面有不同的剪力和弯矩。那么如何全面表达任意截面的剪力和弯矩?解:(1)求梁的支反力例6-4
图示的简支梁在C点处受集中荷载F作用。试作此梁的剪力图和弯矩图。lFABCabFRAFRB
因为AC段和CB段的内力方程不同,所以必须分段列剪力方程和弯矩方程。将坐标原点取在梁的左端A
AC段CB段xxlFABCabFRAFRB
由(1),(3)两式可知,AC、CB两段的剪力图各是一条平行于
x
轴的直线。xxlFABCabFRAFRB
由(2),(4)两式可知,AC、CB两段的弯矩图各是一条斜直线。看图说话。++例6-5图示的简支梁,在全梁上受集度为q的均布荷载作用。试作剪力图和弯矩图。解:(1)求支反力lqFRAFRBABx(2)列剪力方程和弯矩方程剪力图为一倾斜直线绘出剪力图x=0处,x=l
处,BlqFRAAxFRBql/2ql/2+弯矩图为一条二次抛物线得驻点弯矩的极值绘出弯矩图lqFRAABxFRB令l/2+
由图可见,此梁在跨中截面上的弯矩值为最大但此截面上FS=0
两支座内侧横截面上剪力绝对值为最大lqFRAABxFRBql/2ql/2+l/2+例6-6图示简支梁在C点受力矩为M的集中力偶作用,试作此梁的剪力图和弯矩图。解:求梁的支反力将坐标原点取在A点。
因为梁上没有横向外力,所以全梁只有一个剪力方程
由(1)式画出整个梁的剪力图是一条平行于x
轴的直线。lABCabFRAFRBM+AC段CB段AC段和CB
段的弯矩方程不同AC、CB
两段的弯矩图各是一条倾斜直线x=l,M=0xxlABCabFRAFRBM+AC段:x=0,M=0
x=a,CB段:x=a,作图步骤小结:1、求支反力2、建立坐标系3、正确分段,分段原则?4、分段列方程作图,注意x取值范围§6.5
梁的内力平衡微分方程回忆上节例子,有偶然?必然?一、方程的推导
受一般载荷作用的简支梁,建立图示坐标系,规定分布载荷q(x)向上为正,且
q(x)≠constxyq(x)FMFs(x)M(x)Fs(x)+dFs(x)M(x)+dM(x)
假想地用坐标为x
和x+dx的两横截面m-m和n-n从梁中取出dx微段。n-n截面上则分别为
Fs(x)+dFs(x),M(x)+dM(x)dx段内,q(x)视为常数m-m截面上内力为Fs(x),M(x)dx段内,无集中力,集中力偶的作用xyq(x)FMnxmmndxmmnnq(x)C∵整体平衡,∴dx亦然写出微段平衡方程得到略去二阶及以上小量即得Fs(x)M(x)Fs(x)+dFs(x)M(x)+dM(x)mmnnq(x)C公式的几何意义(1)剪力图上某点处的切线斜率等于该点处荷载集度的大小;(2)弯矩图上某点处的切线斜率等于该点处剪力的大小;(3)根据q(x)>0或q(x)<0可以判断弯矩图的凹凸性。二、应用1、直接积分+B.C.
Fs和M2、讨论Fs
和M曲线形状①若某段q=0,则Fs图:M图:②若某段q=C3,则Fs图:M图:Fs图:M图:③若某段Fs=0,则
水平直线
纯弯曲PPaab四点弯曲如何实现?其弯矩图+Mmax=Pa④若某截面Fs=0,则,M取极值⑤集中力作用处,截面两侧。。。⑥集中力偶作用处,截面两侧。。。无荷载集中力FC集中力偶MC向下倾斜的直线
凸的二次抛物线在FS=0的截面水平直线一般斜直线或在C处有转折在剪力突变的截面在紧靠C的某一侧截面一段梁上的外力情况剪力图的特征弯矩图的特征Mmax所在截面的可能位置表6-1在几种荷载下剪力图与弯矩图的特征q<0向下的均布荷载在C处有突变F在C处有突变M在C处无变化C控制点:端点、分段点(外力变化点)和驻点(极值点)等。利用微分关系作Fs
,M图步骤1、确定梁上所有外力(求支座反力);2、根据载荷情况合理分段;3、利用微分规律判断各段内力图的形状;4、确定控制点内力值;5、画内力图。例6-7解:
1.求支反力
3.绘内力图计算控制截面的内力值ABCqaqqa22aaFAFBFsMqaqaqaaqa2FA=qa(↑)FB=2qa(↑)求图示梁剪力弯矩图。
=qa
=2qa例6-8求图示梁的剪力图和弯矩图FA=14.5kN(↑)FB=3.5kN(↑)2.作Fs
,M图解:
1.求支反力3.58.5646.04674.83mACBD2m4m2mq=3kN/mMe=3kN·m
FAFBM(kN·m)Fs(kN)工程力学
第七章弯曲应力
§7.1
纯弯曲梁的内力Fs,M是由分布在横截面上应力构成的,其分布规律但总可以分解成
和
。FsMNyNl
内力剪力Fs
切应力t弯矩M
正应力s∴有结论:平面弯曲时横截面纯弯曲梁(横截面上只有M而无FS)平面弯曲时横截面横力弯曲梁(横截面上既有FS又有M)s
s
t从纯弯曲purebending梁入手,研究
FFaaCDAB++FF+Fa先观察实验现象,再提必要的合理的假设。MMmmnnMMmmnn纵线横线提出假设(assumptions)(a)平截面假设(b)单向受力假设推论:必有一层变形前后长度不变的纤维—中性层选中性轴为坐标轴非常有意义,可使结果表达最简单§7.2
纯弯曲时的正应力横截面
z
轴——中性轴zy
y坐标相同的点所在纵线变形相同,因而应力相同,所以
=
(y)
yOy
轴——纵向对称轴计算点是何规律依然未知,所以。。。
1.变形几何关系(纵向线与中性层的变形关系)
b’b’的线应变2.物理关系当σ≤σp,有胡克定律ρO′d
O′yb′b′MyzOx?待解决问题中性轴的位置中性层的曲率半径
3、静力关系
横截面上内力系为垂直于横截面的空间平行力系,这一力系简化得到三个内力分量。
列平衡方程可得
(1)
(2)(3)yzxOMdAzy
dAFNMzMy
可见,中性轴通过横截面的形心。由于y轴是对称轴,这一条自动满足。则所以弯曲正应力公式弯曲正应力沿。。。中性轴记惯性矩称之为。。。这个公式该怎么用§7.3
横力弯曲时的正应力最大正应力有
,截面翘曲,横截面假设不再成立,但对细长梁(l/h>>5),
仍可用。则公式改写为引用记号—抗弯截面系数矩形截面实心圆截面空心圆截面bhzyzdyzDdy常见截面Iz,Wz的计算弯曲正应力强度条件注:⑴当[
t]≠[
c](脆),应分别计算。
[
t]——许用拉应力
[
c]——许用压应力⑵型钢的Wz等参数应查表。⑶截面上下不对称应当用公式:若为等直梁:塑性材料:
[
t]=[
c]=[
]解:作弯矩图例7-1宽b=120mm,高h=180mm的矩形截面简支梁如图所示,求跨中截面上a,b,c三点的正应力。q=4kN/m3mz120180bac50a点:b点:c点:M(kN.m)4.5例7-2如图所示的简支梁,q=2kN/m,l=2m,分别采用截面面积相等的实心和空心圆截面,且D1=40mm,d2=0.6D2,计算最大正应力并比较。q=2kN/m2mM(kN.m)1zD1yzD2d2y解:作弯矩图危险截面:中间截面;危险点:上下点下面进行强度计算实心计算空心尺寸,d2=30mm,D2=50mm减少了(159-93.6)
159100=41
,说明。。。例7-3校核机车轮轴强度,并求中点位移
。已知d1=160mm,d2=130mm,l=1.58m,P=62.5kN,a=0.267m,b=0.160m,[
]=60MPa,E=200GPa。解:作弯矩图知|M|max=Pa=16.7kN
mPa校核强度,先|M|max处还有个位置也需要校核|M|=Pb=10kN
mPbPb∴安全求中点位移
,AB段纯弯sin=l/2
≈
∴
=0.5
2=0.81mm80y1y22020120z例7-4T形截面铸铁梁的荷载和截面尺寸如图所示。铸铁的许用拉应力为[
t]=30MPa,许用压应力为[
c]=160MPa。已知截面对形心轴z的惯性矩为Iz
=763cm4,y1=52mm,校核梁的强度。F1=9kNF2=4kNACBD1m1m1mFRAFRBF1=9kNF2=4kNACBD1m1m1m-+4kN·m2.5kN·m解:最大正弯矩在截面C上最大负弯矩在截面B上
B截面C截面80y1y22020120z∴安全§7.4
弯曲切应力
平面横力弯曲时,梁横截面上既有Fs又有M,即存在有
。按照切应力互等定律,平行于中性层的纵向平面也有
。可能造成。。由矩形截面梁入手,研究
。横力弯曲变形特点:截面翘曲一、矩形截面BAF
z
y
xFs推公式前要干什么?必要的合理的假设!!!
′假设:①截面上任意一点
方向均平行于Fs;②
沿宽度方向均匀分布,即
=
(y)下面的任务:
=
(Fs,y)=?BAFFsFsFsMM+dMM11′22′x121′2′dxFsFsMM+dMzyxbdx
′xh/2dx121′2′A*
dA
′N1N2yzyxbdxA*
dA
′N1N21855Журавский注意各项含义,尤其是forrectangularsection,ybhFs
沿截面高度按抛物线规律分布∴(上、下边缘)
=0y=0(中性轴)zyτA*
亦抛物线分布,所以翘曲二、工字形截面h1bhzdy腹板——坐标y
处切应力符合矩形截面梁两个假定y抛物线y=0(中性轴)h1bhzdy腹板
剪力的(95~97%)分布在腹板上,且接近均匀分布,所以可近似计算为翼缘——剪应力较小,通常不予考虑
对型钢,应利用附录表中数据计算
maxh1bhzdy三、圆形截面Fszyd
a,a1两点:
在切线方向。
aa1连线上各点,
值相等,均交于一点。
a1a中性轴上各点:
∥Fs,设均匀分布
中性轴上各点:
∥Fs
均匀分布zyτmax四、环形截面切应力强度校核
以下情况需要校核切应力强度,即:下述情况切应力对强度的影响都较大:
1.短梁
2.薄壁梁
3.木梁(各向异性)
4.铆接焊接而成的组合截面梁切应力强度条件
max≤[
]
适用于
=0或数值很小、
≠0的点。一般来说
max和
max不在同一位置要分别考虑。例7-5一简易起重设备如图所示。起重量(包含电葫芦自重)F=30kN。跨长l=5m。吊车大梁AB由20a工字钢制成。其许用弯曲正应力[
]=170MPa,许用弯曲切应力[
]=100MPa,试校核梁的强度。+37.5kN·m5mAB2.5mFC解:此吊车梁可简化为简支梁,力F
在梁中间位置时有最大正应力:(a)正应力强度校核所以梁的最大正应力为由型钢表查得20a工字钢的F+Fsmax5mABFC(b)切应力强度校核
在计算最大切应力时,应取荷载F紧靠任一支座如支座A处所示,因为此时该支座的支反力最大,而梁的最大切应力也就最大。查型钢表中,20a号工字钢,有d=7mm据此校核梁的切应力强度以上两方面的强度条件都满足,所以此梁是安全的。§7.5
提高梁弯曲强度措施我们现在知道,弯曲有自然就有一个问题哪个起着主导因素?例7-6悬臂梁载荷尺寸如图示,比较
max和
max。Plbh说明。。。提高弯曲正应力强度措施一、减小Mmax——合理安排梁的受力qlM1、合理安排支座q0.6l0.2l0.2lM合理布置支座的实例2、合理布置载荷(分散化)F集中力尽量靠近支座(但剪力会很大)。3、静定→超静定(加多余约束)FFlM改变加力位置减小最大弯矩二、增大Wz——合理设计截面1、合理形状:由Mmax≤[
]Wz
,W/A越大越合理hbzhh0.167h0.125d(0.27~0.31)h
原则:尽量使材料远离中性轴。d例7-6①对于[
t]=[
c],哪种截面最合理?[
t]=[
c],中性轴为对称轴合理。A截面最合理。②
对于[
t]≠[
c]的材料,应尽可能使
tmax=[
t],
cmax=[
c],如铸铁[
t]<[
c],中性轴靠近受拉一侧合理。③图示铸铁梁怎样放置最合理?2、合理放置Fbhbh④竖放?or横放?三、等强度梁(变截面梁),如鱼腹梁,叠层梁etc。。。叠板弹簧四、采用复合材料sandwichzy木钢钢工程力学第八章弯曲变形§8.1引言一、工程中的弯曲变形问题受弯杆件不仅要有足够强度,还要有足够刚度。即变形不能过大。otherwise,齿轮轴————→磨损,断齿吊车梁————→梁振动轧辊————→厚度不均,废品二、研究弯曲变形的目的1、刚度校核2、求解超静定梁3、为振动计算和压杆稳定计算做知识准备ontheotherhand,。。。forinstance,laminatedspring§8.2梁的挠度和转角度量弯曲变形,可从轴线、横截面两方面来考虑。1.挠度
转角
w挠度2.转角
=
(x)3.挠曲线方程w=f(x)挠曲线4.挠度和转角的关系5.二者符号规定。。。C'B'ACwB
x§8.3挠曲线微分方程纯弯曲时曲率与弯矩的关系
横力弯曲时,M
和
都是x的函数,略去剪力对梁的位移的影响,则
这就是挠曲线方程。
但使用不方便。欲知M(x),w=f
(x)和
=f'(x)之间的关系。由高数知,平面曲线w=f(x)任一点的曲率为即得到挠曲线微分方程Kirchhoff所提精确,非线性求解困难,于是要。。。actually,挠曲线非常平坦,w和
都很小,so。。。正负号如何选取?在图示坐标系中
曲线凸时:
因此,w''与M的正负号相同
曲线凹时:OxwMMxOwMM
讨论:①Fs对w和
有影响,考虑剪切效应(翘曲)——Timoshenko②刚度条件等截面直梁积分法求§8.4
弯曲变形一次积分,得转角方程二次积分,得挠曲线方程C1,C2由B.C.来确定,以及continuousconditions和smoothconditions,forexamplePDPABC①边界条件:②连续条件:③光滑条件:或或例8-1求图示等截面直梁的挠曲线、最大挠度及最大转角,已知抗弯刚度为EI。①建立坐标系并写出弯矩方程②写出微分方程并积分③应用边界条件求积分常数解:xPLwBxwAP例8-2求图示等截面直梁的挠曲线方程、转角方程、最大挠度及最大转角,已知抗弯刚度为EI。ABql
解:由对称性可知,梁的两个支反力为FRAFRB
此梁的弯矩方程及挠曲线微分方程分别为x
梁的转角方程和挠曲线方程分别为
边界条件x=0和x=l时,w=0
xABqlFRAFRB
A
B
在x=0和x=l处转角的绝对值相等且都是最大值,wmax
在梁中点处有最大挠度值,例8-3求图示等截面直梁的挠曲线方程、转角方程、最大挠度及最大转角,已知抗弯刚度为EI。ABFDablFRAFRB解:梁的两个支反力为AD和DB的弯矩方程分别为12xxAD段DB段D点的连续条件
边界条件
代入方程可解得:ABFDab12FRAFRB
在x=a处,
w1'=w2',w1=w2在x=0处,w1=0在x=l处,w2=0AD段DB段下面求最大挠度和最大转角首先可以判断,最大转角非A即B。
将x=0和x=l
分别代入转角方程,得到左右两支座处截面的转角:
当a>b
时,右支座处截面的转角绝对值为最大。下面求最大挠度。简支梁的最大挠度应在w'=0处。先研究第一段梁,令w1'=0,得a>b时,说明
x1<a
最大挠度确实在第一段梁中,等于*由
式,F靠近B支座时,b→0,说明可用中点挠度代替最大挠度,引起的误差很小。
结论:在简支梁中,不论它受什么荷载作用,只要挠曲线上无拐点,其最大挠度值都可用梁跨中点处的挠度值来代替,其精确度能满足工程要求。叠加法求§8.5弯曲变形
上一节可以看出积分法的优点:使用范围广,求解较精确,可以求出任意截面上的w和
;缺点:当弯矩方程分段较多时,计算非常繁琐。于是,造表8-1。。。叠加原理
梁的变形微小,且梁在线弹性范围内工作时,梁在几项荷载(可以是集中力,集中力偶或分布力)同时作用下的挠度和转角,就分别等于每一荷载单独作用下该截面的挠度和转角的叠加。当每一项荷载所引起的挠度为同一方向(如均沿w轴方向),其转角是在同一平面内(如均在xy平面内)时,则叠加就是代数和。例8-4求图示简支梁中点挠度wC。qFACB解:q在C点产生w1
F在C点产生w2
wC=w1+w2例8-5求图示简支梁中点挠度wC,
A和
B
。qACBm解:q在C点产生w1,
A1=-
B1
m在C点产生w2,
A2和
B2
wC=w1+w2
A=A1+A2
B=B1+B2例8-6求图示悬臂梁wB和
B
。ABqCl/2l/2解:载荷分解为①+②如图ABq①wB1
B1对①对②ABqC②l/2wc2
C2BC为直线,
B=B1+B2=。。。
wB=wB1+wB2=。。。例8-7求图示悬臂梁wB和
B
。l/2l/2ABCP2II解:分段刚化。分段求变形,然后叠加,C处切开,先考虑CBPCBwB1
B1再看AC段PACPl/2wB2
B2引起的wB2和
B2分别为
B=B1+B2=。。。
wB=wB1+wB2=。。。wC
C例8-8求图示外伸梁wC。PACBlaPPawC1
BwC2解:分段刚化。分段求变形,然后叠加。PCB②BA①如①如②§8.6简单超静定梁Q:还记得超静定问题的解法吗?A:以截面法为基础的三条件法。用变形叠加法求解,具体步骤:1、确定超静定次数;2、补充变形协调方程;3、联立平衡方程求全部未知力;4、作剪力、弯矩图。例8-9已知q,l,EI,作剪力、弯矩图。ABqlABqlFBMAFA解:一次超静定。解除约束(例如B处),代之以反力FB。协调方程wB=0wB=wB(q)+wB(FB)查表知联立得作图略思考:若解除A处转动约束,如何?以反力偶MA代替。
A=A(MA)+
A(q)=0§8.7提高弯曲刚度的一些措施一、刚度条件1.数学表达式2.刚度条件的应用(1)校核刚度(2)设计截面尺寸(3)求许可载荷[w]和[
]是构件的许可挠度和许可转角。二、提高弯曲刚度的措施矩形木梁的合理高宽比北宋李诫于1100年著«营造法式»一书中指出:矩形木梁的合理高宽比(h/b)为1.5英(T.Young)于1807年著«自然哲学与机械技术讲义»一书中指出:矩形木梁的合理高宽比为时,强度最大时,刚度最大Rbh也就是说,大部分措施同§7.5节,其余不再赘述只强调一条,非常行之有效!减小梁的跨度!!!工程力学第九章应力状态和强度理论
§9.1
应力状态的概念一、问题的提出1.必要性
简单变形问题强度条件——用横截面上危险点的应力与许用应力相比。Review:共同点:①危险点的应力作用面一般为横截面;②决定强度条件的只有一个常数。但是,轴承、齿轮的破坏是复杂变形问题。所以需要建立复杂变形问题的强度条件!为此,需建立应力状态的概念。我国是世界上最早发明和使用车的文明古国之一。
2.可能性①任意斜截面上的应力可用横截面应力来表示,说明
过一点任意二截面应力不独立!②应力表达式本质上是无限小单元体平衡方程。1.应力状态二、若干基本概念和结论
过一点不同方位截面上应力情况,称为这一点的应力状态(stateofthestressesatagivenpoint)。xyzO变形体内任意一点A。取邻域——单元体图示18个应力分量集合经过讨论仍有一些美中不足能否更简单一些?2.主应力、主平面
主平面:切应力为零的平面。主应力:作用于主平面上的正应力。说明:一点处一定存在这样的一个单元体,组成它的三个相互垂直的面均为主平面,三个互相垂直的主应力分别记为:,且规定按代数值大小的顺序来排列,即能否?3.应力状态的分类①单向应力状态(uniaxialstressedstate);②二向应力状态(biaxialstressedstate);③三向应力状态(triaxialstressedstate)。
在已知A点的应力状态条件下①找到任意截面上的应力
②找到A点的主平面和主应力三、应力状态分析的任务建立强度条件工程上,任意截面通常取危险面,A点通常取危险点。§9.2
应力状态实例一、单向应力状态简单拉伸
1
1简单压缩
3
3
注意主应力顺序!1.圆轴扭转(表面一点A)mm.A纯剪切二、二向应力状态mm.AA注意视角的变化!2.拉扭组合AFMeFmTTAFNFN
3.横力弯曲zy12345FsM
12453123451,5单元体为单向应力状态,其余二向应力状态注意对号入座!4.弯扭组合T+mM-PlmPl
ABDABDAA请思考B、D两点单元体5.受内压薄壁筒(D/
>20)
薄壁圆筒的横截面面积沿圆筒轴线作用于筒底的总压力为FpD
′nn
mmnnlF直径平面假想用一直径平面将m-n之间圆筒剖开,如图取下半环为研究对象pyOFNFNd
"所以,有结论:环向应力是轴向应力2倍pD
′nn
mmnnlF'''三、三向应力状态1、滚珠与外圈接触点2、火车轮与轨道接触点3、齿轮接触点4、厚壁筒内部各点画出单元体(径向应力较之环向轴向较小,略去)§9.3二向应力状态分析之解析法一、问题提法一般情况下,二向应力状态单元体可表为x
xyz
y
xy
yx
x
y
xy
yx下标何意?xya
y
x
yx
xy不忘初心,要做什么?
通过分析斜面ef上的应力情况,来确定主应力的大小和主平面的方位。ef
怎么求
和
?通过。。。,为此需要。。。tefa
x
xy
yx
y
n
nt
(1)由x轴转到外法线n,逆时针转向时
为正;
(2)正应力
仍规定拉应力为正;
(3)切应力
对单元体内任一点取矩,顺时针转为正。符号规定(Signconvention)tefa
x
xy
yx
y
n
xya
y
x
yx
xyef
nt二、解析法efa
dAdAsin
dAcos
tefa
x
xy
yx
y
n
设
和
均为正,如图示
对研究对象列n和t方向的平衡方程得由切应力互等定律和三角函数倍角关系,化简可得:不难看出即两相互垂直面上的正应力之和保持一个常数,推广。表明应力。。。的特性注意各项正确符号![讨论]:1、令则意味什么?此时
取极值
01,
02为主平面且。。。得到了
max和
min后,然后和0按照大小排序,即得
1、
2和
3
我们现在能求得所有主应力,也知道主平面的方位。但是,还有一个问题仍需解决,那就是。。。
可有三种解决方法:。。。2、令此时
取极值
11,
12为极值切应力平面且。。。跳至p503、由前述分析比较和可见recallch4:uniaxialtension,where…例9-1图示单元体(单位MPa),求e-f截面上的应力情况及主应力和主单元体的方位。406050nef30°解:(1)求
e-f截面上的应力
x=-40MPa,
y=60MPa,
xy=-50MPa(2)求主应力和主单元体的方位因为
x<y,所以
0=-22.5°与
min对应
x
y
xy22.5°
1
3解:(1)求主平面方位例9-2求平面纯剪切应力状态的主应力及主平面方位.经判断,
0=-45°与
max对应
(2)求主应力
1=
,
2=0,
3=-
xy45°
1
3§9.4二向应力状态分析之图解法一、应力圆由知为关于
的参数方程,自然想知道。。。,于是表示
-
平面上的一个圆——应力圆(Mohr’scircle)RCO二、讨论(纯粹性和完备性)1、A点的二向应力状态是否唯一对应一个应力圆?Pf:若A点的二向应力状态确定,则在
-平面上确定了两点D,D'CD'(
y,yx)D(
x,xy)AB有圆心有半径,
唯一确定。O2、应力圆上的点是否唯一对应
平面上的应力?设圆上任意一点E(
,
),目标是推得Pf:作图说明CD'(
y,yx)D(
x,xy)ABOE(
,
)2
2
0F证毕3、由1和2,A点应力状态A的应力圆应力圆与单元体的对应关系单元体应力圆A.点面对应一面上的应力一点的坐标值B.转向对应斜面法线转向半径转向C.二倍角对应斜面转角
半径转角2
对应相同对应A.点面对应C.二倍角对应B.转向对应AB
2
OCBACD'(
y,yx)D(
x,xy)ABO4、在应力圆上确定主平面、主应力、极值切应力平面和
max,
minA1B1G1G2即A1,B1,G1,G2四点例9-3作单向拉伸状态应力圆。解:单向拉伸
A
Bab45°e90°
E(与
max成45°角)
1=
2=3=0O例9-4作纯剪切应力状态应力圆。解:纯剪切
90°90°
1=
3=-
1=
3=-
2=0(与
1和
3成45°角)
1=
45°
3=-
45°主应力单元体O例9-5作图示应力状态应力圆。解:广义静水压
O只产生体积变化,不产生剪切变形例9-6两端简支的焊接工字钢梁及其荷载如图所示,梁的横截面尺寸(mm)示于图中。试绘出截面C上a,b两点处的应力圆,并用应力圆求出这两点处的主应力。12015152709zab250kN1.6m2mABC解:(1)首先计算支反力,并作出梁的剪力图和弯矩图Mmax=MC
=80kN·mFsmax=FC左
=200kN250kN1.6m2mABC200kN50kN+-80kN·m+(2)横截面C上a点的应力为a点的单元体如图所示a
x
x
xy
yx12015152709zab
由
x,xy
定出D点由
y,yx
定出D′点
以DD′为直径作应力圆O
C(3)作应力圆
x=122.5MPa,xy
=64.6MPa
y=0,
xy=-64.6MPaABA1
3A1,A2两点的横坐标分别代表a点的两个主应力
1和
3A1点对应于单元体上
1所在的主平面(0,-64.6)D′A2
1(122.5,64.6)D(4)横截面C上b点的应力b点的单元体如图所示b
x
x12015152709zab
0a
x
x
xy
yx
3
1b点的三个主应力为
1所在的主平面就是x
平面,即梁的横截面Cb
x
x
1
O(136.5,0)D(0,0)D′解释扭转破坏现象
1=
45°
§9.5三向应力状态
一般的三向应力状态比较复杂。好在我们只对
max和
max感兴趣,所以从主应力单元体入手研究最为简单。
1
2
3dd1e1e
首先看与
2平行的某截面dee1d1,该截面上的应力只决定于
1和
3,why?de
1
3可作出如下应力圆:stos1s2s3
类似地,与
3平行的截面,其上应力只决定于
1和
2;
与
1平行的截面,其上应力只决定于
2和
3;
三类特殊截面对应图示三个应力圆;
其余截面对应三个应力圆所包围之阴影区域。显而易见,回看p27解:这是主应力单元体,据定义,
1=60MPa
2=30MPa
3=-70MPa
307060(MPa)例9-7求图示单元体的主应力和最大切应力。例9-8求图示单元体的主应力和最大切应力。解:这是特殊三向应力状态,已知一个主平面和主应力,另两个主平面和主应力可按平面应力状态计算。∴
1=15MPa
2=12MPa
3=-11MPa1451210(MPa)xyz例9-9求图示单元体的主应力和最大切应力。解:已知一个主应力40MPa,另两个主应力可按纯剪应力状态结论直接写出。
1=40MPa,
2=30MPa,
3=-30MPa3040(MPa)xyz§9.6广义胡克定律一、问题提法单向应力状态:扭转、纯剪切应力状态:复杂应力状态下应力与应变的关系CauchyPoissonKelvinSt.VenantHertzKirchhoff。。。?xyzO
对如图所示最一般的三向应力状态,可看作三组单向应力状态和三组纯剪切的组合。分别求之,然后叠加。
后继弹性力学可以证明,对于各向同性材料,在线弹性范围、小变形条件下,正应力只引起正应变,而切应力只引起同一平面内的切应变。
先讨论由
引起的
x
y=++x方向的正应变单独存在时单独存在时
单独存在时
x
z
y
z
x
,
y
,
z同时存在时,x
方向的正应变
x为同理,
x,
y
,
z同时存在时,y,z
方向的正应变为再讨论由
引起的γ在xy,yz,zx三个面内的切应变分别为
上式称为广义胡克定律(GeneralizedHooke’sLaw),可用下标表示为
——沿x,y,z轴的线应变
——在xy,yz,zx面上的切应变1.下标xyz的含义2.公式含义
如选图示主单元体,则广义胡克定律形式变为形式简单!广义胡克定律的应用——求平面应力状态下任意方向的正应变:求出,就可求得方向的正应变
aa+90˚二、体变律dxdzdy
3
1
2原体积:现体积:考察图示主单元体体积相对改变(体积应变)
:代入胡克定律,得即
m=K——体变律(
=E
)各项名称:平均应力——体积弹性模量——可以证明:
换成
亦然。含义?例9-10已知平面应力状态(单位:MPa)如图所示,若E=200GPa,μ=0.3,求n方向的
n。10603030˚n解:
x=10MPa,
y=60MPa,
xy=-30MPa由广义胡克定律例9-11已知边长为a的正方形薄板,两侧受均匀拉力(q)作用,已知E,μ,求对角线AB的伸长。aABqq解:K
取点K,作单元体如图,单向应力状态,
=q
O(
,0)D(0,0)D′G2G1作应力圆G1G2两点横坐标即单元体45˚,-45˚截面上的正应力。
45˚=
-45˚=0.5
例9-12边长a=0.1m的铜立方块,无间隙地放入体积较大,变形可略去不计的钢凹槽中,如图所示。已知铜E=100GPa,μ=0.34,当受到F=300kN的均布压力作用时,求该铜块的主应力,体积应变以及最大切应力。解:铜块横截面上的压应力aaaFzyx
z
x
y铜块受力如图所示变形条件为解得铜块的主应力为最大切应力体积应变为bhzb=50mmh=100mm例9-13已知矩形外伸梁受力F1,F2作用。弹性模量E=200GPa,泊松比
=0.3,F1=100KN,F2=100KN。
求:(1)A点处的主应变
1,
2,
3(2)A点处的线应变
x,
y,
zaAF1F2F2l解:梁为拉伸与弯曲的组合变形。A点有拉伸引起的正应力和弯曲引起的切应力。(拉伸)(负)A
x=20MPa
xy=30MPa
(1)A点处的主应变
1,
2,
3(2)A点处的线应变
x,
y,
z§9.7弹性体应变能FOx一、若干概念FxO1、应变能(变形能,弹性势能)x——变形状态参数2、弹性体(与过程无关,只与状态有关,无能量损耗)3、线弹性体?
O左图中的阴影面积是何含义二、线弹性体的应变能1、应变能密度如上页所示单向应力状态
O推广至三向应力状态(主应力表示)Why?利用广义胡克定律消去主应变,得
m图b
m
m
2图a
1
3=+
2-
m图c
1-
m
3-
m应变能密度:图b体积改变,形状不变图c形状改变,体积不变2、体变能密度和形变能密度(recall刘5版Ch2p36)
m图b
m
m
2图a
1
3=+
2-
m图c
1-
m
3-
m——体变能密度图c单元体的体积应变:应变能密度=体变能密度(b)+形变能密度(c)——形变能密度所以图c单元体体积不变图a单元体的体积应变:分别为多少?哪个更重要?
m图b
m
m
2图a
1
3=+
2-
m图c
1-
m
3-
m3、材料常数之间的关系
γO
即求证证明:取纯剪切应力状态单元体§9.8强度理论一、概述简单变形强度条件由实验确定复杂的呢?也做实验?直接实验难以实现或耗费巨大积累大量数据分析得到如下结论:1、复杂应力状态下,材料强度失效,形式也无非两种脆性断裂brittlefracture塑性屈服plasticflowfracturecriteriayieldcriteria2、材料强度失效存在共同因素任务:能否利用简单条件下的结果建立复杂变形问题强度条件?建立复杂受力状态强度条件的思路(逻辑)应力状态复杂强度失效(破坏)形式相同但是造成的原因包含共同因素则归纳原因形成假说解释有可能利用单向拉伸实验结果建立材料复杂应力状态下的失效判据强度条件建立**强度理论二、四大经典强度理论1.第一强度理论(最大拉应力)∊
断裂破坏强度理论
理论要点,基本假说:无论简单复杂,引起材料脆断破坏的因素是最大拉应力
1。理论条件:
1≤
0=
b适用范围:脆性材料拉、扭,一般材料三向拉;不能用于解释单向压缩,三向压有何缺陷?2.第二强度理论(最大拉应变)∊
断裂破坏强度理论
-构件危险点的最大伸长线应变-极限伸长线应变,由单向拉伸实验测得理论条件理论要点,基本假说:无论材料处于什么应力状态,最大伸长线应变
1是引起材料脆断破坏的因素。有何缺陷?3.第三强度理论(最大切应力)∊流动破坏强度理论
-构件危险点的最大切应力
-极限切应力,由单向拉伸实验测得
理论条件:实验表明此理论能较完美解释塑性材料的屈服破坏。理论要点,基本假说:无论材料处于什么应力状态,最大切应力
max是引起材料屈服的因素。有何不足?4.第四强度理论(最大形变能密度)∊流动破坏强度理论
-构件危险点的形变能密度
-形变能密度极限值,由单向拉伸实验测得
1=
s,
2=3=0理论条件实验表明:对塑性材料,此理论比第三强度理论更符合实验结果,在工程中得到了广泛应用。理论要点,基本假说:无论材料处于什么应力状态,形变能密度vd
是引起材料屈服的因素。5.讨论理论条件统一形式
r≤
0(危险应力)
b
s
r
称为复杂应力状态的相当应力。实用条件统一形式
r≤
0/n=[
]看个平面应力状态的特例
已知:
和
试写出最大切应力理论和形变能密度理论相当应力的表达式。
解:首先确定主应力
2=0最大切应力理论形变能密度理论
2=0
例9-14根据强度理论,可以从低碳钢类塑性材料单轴拉伸时的
推知纯剪切应力状态下的
。解:纯剪切应力状态下
1=
,
2=0,
3=–
按第三强度理论得强度条件为:另一方面,剪切的强度条件是:所以[t]=0.5
[
]为材料在单向拉伸时的许用拉应力。材料在纯剪切应力状态下的许用切应力为[
]。按第四强度理论得强度条件为:按第三强度理论得到:按第四强度理论得到:[
]=0.5
[
]≈0.6
例9-15对图示各单元体,分别按第三强度理论及第四强度理论求相当应力。
(b)140MPa110MPa(c)70MPa140MPa80MPa(d)50MPa70MPa30MPa40MPa120MPa(a)120MPa解:(1)单元体(a)(2)单元体(b)120MPa(a)120MPa(b)140MPa110MPa(3)单元体(c)(4)单元体(d)(c)70MPa140MPa80MPa(d)50MPa70MPa30MPa40MPaF解:危险点A的应力状态如图例9-16直径d=0.1m的铸铁圆杆受力如图,Me=7kN·m,F=50kN,材料[
t]=40MPa,试用第一强度理论校核杆的强度。故安全。FMeMeAA
例9-17矩形截面铸铁梁受力如图,已知P,a,试求①A、B、D三点单元体;②定性画出三点应力圆;③画出主单元体,大致主平面的方位和主应力方向;④按第一强度理论,判断B、D裂缝走向。PPDABaa解:作出剪力图和弯矩图:FsMABDABDBDA
(
,0)(0,0)
(
,
)(0,-
)
(0,
)(0,-
)例9-18矩形截面梁中性层K点处,沿与x轴成45˚方向,测得
45˚=-325×10-6,已知E=200GPa,μ=0.3,标注尺寸mm,求P。PABl/2l/2K45˚3040解:中性层处解得P=80kNK点为纯剪切,如图K
1=
=
-45˚
3=-
=
45˚工程力学
第十章组合变形
§10.1
概述
工程实际中许多杆件往往同时存在几种基本变形,它们对应的应力或变形属于同一量级,需要同时加以考虑。对于组合变形,首先。。。,其次。。。,最后。。。。=++
组合变形的形式有无穷多种,本章介绍四种典型形式:
1.斜弯曲;
2.拉(压)弯组合;
3.偏心拉压;
4.弯扭组合。通过这四种典型组合变形的学习,学会计算一般组合变形强度的原理和方法。一生二、二生三、三生万物!§10.2斜弯曲比较二者:FxyzFxyz1、荷载的分解2、任意横截面任意点的“σ”(1)内力:(2)应力:k(应力的“+”、“-”由变形判断)FFxyz在Mz
作用下:在My
作用下:(3)叠加:正应力的分布——kF危险截面——固定端危险点——“b”点为最大拉应力点,“d”点为最大压应力点。强度条件(简单应力状态)——3、强度计算abcdabdclFxyz4、刚度计算yzφFfβfyfz当Iy≠Iz
,β≠φ,挠度与载荷方向不一致——斜弯曲;当Iy=Iz
,β=φ,挠度与载荷方向一致——平面弯曲10001000Fy=1.5kNFz=1kN5075zy1212危险截面危险点危险点例10-1求最大正应力My=2kN.mMz=1.5kN.mFy=1.5kN例10-2求最大正应力10001000Fz=1kN危险截面65zy?×zyMzMyMMy=2kN.mMz=1.5kN.m注意事项不要把圆截面梁当斜弯曲计算任意形心轴都是形心主惯性轴挠度方向与载荷线一致不正确正确强度问题——按平面弯曲计算aFazyCIy
=IzFyxz解:1、外力分解2、强度计算例10-3矩形截面木檩条如图,跨长l=3.3m,受集度为q=800N/m的均布力作用,[
]=12MPa,许用挠度为:l/200,E=9GPa,试校核此梁的强度和刚度。b=80mmh=120mmlqABzqy
=26°34′3、刚度计算zqy
=26°34′fzfy所以。。。§10.3拉(压)弯组合F1F2F2F
FyFxxyzlFFyFx=FyFx+FNM
′
"+=xyzFyFx危险点拉伸正应力最大弯曲正应力FNM
′
"+危险点:单向应力状态,所以强度条件:例10-4悬臂吊车如图所示,横梁用20a工字钢制成。其抗弯刚度Wz
=237cm3,横截面面积A=35.5cm2,总荷载F=34kN,横梁材料的许用应力为[
]=125MPa。校核横梁AB的强度。BADFFRAyFRAxFyFxFNBC30°解:(1)分析AB的受力情况AB杆为平面弯曲与轴向压缩组合变形
中间截面为危险截面,最大压应力在该截面的上边缘。FACD1.2m1.2mB30°(2)压缩正应力(3)最大弯曲正应力(4)危险点的应力FACD1.2m1.2mB30°所以安全。BADFFRAyFRAxFyFxFNBC30°例10-5小型压力机的铸铁框架如图所示。已知材料的许用拉应力[
t]=30MPa,许用压应力[
c]=160MPa,Iy=5310cm4,A=1510-3m2,z0=7.5cm。试按立柱的强度确定压力机的许可压力F。yzz0z15050150150350FFFnnFNMy(1)分析立柱横截面上的内力和应力在n-n
截面上有轴力FN及弯矩Mynn350FFyzz0轴力FN产生的拉伸正应力为FnnFNMynnyzz0z1350FF5050150150
由弯矩My产生的最大弯曲正应力为5050150150yzz0z1拉nn350FFFnnFNMy(2)叠加在截面内侧有最大拉应力[F]45.1kN5050150150yzz0z1拉压nn350FFFnnFNMy
在截面外侧有最大压应力[F]171.3kN[F]45.1kN所以取5050150150yzz0z1拉压nn350FFFnnFNMy例10-6正方形截面立柱的中间处开一个槽,使截面面积为原来截面面积的一半。求开槽后立柱的最大压应力是原来的几倍。FFaaaa11FFa/2未开槽前立柱为轴向压缩解:Faa开槽后1-1是危险截面危险截面为偏心压缩将力F
向1-1形心简化未开槽前立柱的最大压应力开槽后立柱的最大压应力§10.4偏心拉压FyzFFe强度计算FeFe=+FF强度条件§10.5弯扭组合
一般的机械传动轴,大多同时受到扭转力偶和横向力的作用,发生扭转弯曲组合变形。laABCFd分析钢杆AB强度是否达标?BAFMex画内力图确定危险截面:MTFlMTFa所以危险截面是:xzy
k1k2k1,k2为危险点,如选k1,则单元体为k1
为平面应力状态,需用强度理论k1
主应力计算相当应力计算按第三强度理论按第四强度理论强度校核
该公式适用于图示的平面应力状态。
是危险点的正应力,
是危险点的切应力,且横截面不限于圆形截面。讨论:
该公式适用于弯扭组合变形;拉(压)与扭转的组合变形;以及拉(压)扭转与弯曲的组合变形。(1)k1
弯扭组合变形时,相应的相当应力表达式可改写为(2)对于圆形截面杆有式中W为杆的抗弯截面系数。M,T分别为危险截面的弯矩和扭矩。以上两式只适用于弯扭组合变形下的圆截面杆。例10-7空心圆杆AB和杆CD焊接成整体结构,受力如图。AB杆的外径D=140mm,内外径之比α=d/D=0.8,材料的许用应力[
]=160MPa。试用第三强度理论校核AB杆的强度。ABCD1.4m0.6m15kN10kN0.8m解:(1)外力分析将力向AB杆的B截面形心简化得AB杆为扭转和平面弯曲的组合变形。ABFMe+15kN·m(2)内力分析-画扭矩图和弯矩图-20kN·mABFMe所以安全。例10-8传动轴如图所示。在A处作用一个外力偶矩Me=1kN·m,皮带轮直径D=300mm,皮带轮紧边拉力为F1,松边拉力为F2。且F1=2F2,l=200mm,轴的许用应力[
]=160MPa。试用第三强度理论设计轴的直径。zF1F2xyABl/2l/2MeMeMeCF=3F2解:将力向轴的形心简化
轴产生扭转和垂直纵向对称面内的平面弯曲。+T=1kN·m+中间截面为危险截面1kN·mMeMeCF=3F2xyz有两个垂直弯矩时,如何?MzMyxyzMyMzM工程力学
第十一章压杆稳定
§11.1
相关概念构件的承载能力①强度②刚度③稳定性工程中有些构件具有足够的强度、刚度,却不一定能安全可靠地工作。(a)(b)
拉压杆的强度条件为:
(a):木杆的横截面为矩形(1cm
2cm),高为3cm,当荷载重量为6kN时杆还没有破坏。(b):木杆的横截面与(a)相同,高为1.4m(细长),当压力为0.1kN时杆被压弯,导致破坏。
(a)和(b)竟相差60倍,为什么?一、(平衡)稳定的概念稳定平衡随遇平衡不稳定平衡小球平衡的三种状态区别何在?关键--确定压杆的临界压力Fcr!二、压杆稳定的概念FFFFFF<FcrF=Fcr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年云计算服务模式创新与市场竞争格局预测研究报告
- 2025届云南省云南大附中(一二一校区)八年级英语第二学期期中质量检测试题含答案
- 四川省锦江区七中学育才2025年英语八下期中复习检测试题含答案
- 2025年医院信息化建设医疗质量管理评估报告
- 2025年医药企业研发外包(CRO)与临床试验数据安全与隐私保护法规解读报告
- 2025年医药流通行业供应链与成本控制策略创新研究报告
- 2025年医药流通行业供应链优化与成本控制管理创新报告
- 2025年数字货币行业监管政策对加密货币市场的影响报告001
- 2025年能源与资源行业:全球石油市场供需变化与价格波动影响分析报告
- 深海矿产资源勘探技术前沿进展报告:深海地质勘探技术装备研发热点001
- 2025年高考英语全国二卷试题含答案
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- 江岸区2023-2024学年下学期期末七年级数学试卷(含答案)
- 《国土空间规划》-课程教学大纲
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 第3课 象外之境-中国传统山水画 说课稿- 高中美术人教版(2019)美术鉴赏
- 幼儿园大班毕业典礼教师诗朗诵
- 【部编人教版】贵州省铜仁市2021-2022年八年级下期末数学试卷
- 矿用隔爆兼本安型电子皮带秤技术规格书
- 冀教版七年级英语下册期末试题-附答案
- 住所(经营场所)产权证明(模版)
评论
0/150
提交评论