版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
./14思考与练习1.什么叫张量?张量有什么性质?答:张量:由若干个当坐标系改变时满足转换关系的分量组成的集合,称为张量,需要用空间坐标系中的三个矢量,即9个分量才能完整地表示。它的重要特征是在不同的坐标系中分量之间可以用一定的线性关系来换算。基本性质:1张量不变量张量的分量一定可以组成某些函数,这些函数值与坐标轴无关,它不随坐标而改变,这样的函数,叫做张量不变量。二阶张量存在三个独立的不变量。2张量可以叠加和分解几个同阶张量各对应的分量之和或差定义为另一个同阶张量。两个相同的张量之差定义为零张量。3张量可分为对称张量、非对称张量、反对称张量若张量具有性质,就叫对称张量;若张量具有性质,且当i=j时对应的分量为0,则叫反对称张量;如果张量,就叫非对称张量。任意非对称张量可以分解为一个对称张量和一个反对称张量。4二阶对称张量存在三个主轴和三个主值如果以主轴为坐标轴,则两个下角标不同的分量均为零,只留下两个下角标相同的三个分量,叫作主值。2.如何表示任意斜微分面上的应力?答:若过一点的三个互相垂直的微分面上的九个应力分量已知,则借助静力平衡条件,该点任意方向上的应力分量可以确定。如图14-1所示,设过Q点任一斜切面的法线N与三个坐标轴的方向余弦为l,m,n,图14-1任意斜切微分面上的应力l=cos<N,x>;图14-1任意斜切微分面上的应力m=cos<N,y>;n=cos<N,z>。若斜微分面ABC的面积为dF,微分面OBC<x面>、OCA<y面>、OAB<z面>的微分面积分别为dFx、dFy、dFz,则各微分面之间的关系为dFx=ldF;dFy=mdF;dFz=ndF又设斜微分面ABC上的全应力为S,它在三坐标轴方向上的分量为Sx、Sy、Sz,由静力平衡条件,得:整理得〔14-6用角标符号简记为显然,全应力斜微分面上的正应力为全应力在法线N方向的投影,它等于,,在N方向上的投影之和,即〔14-7斜切微分面上的切应力为〔14-8所以,已知过一点的三个正交微分面上9个应力分量,可以求出过该点任意方向微分面上的应力,也就是说,这9个应力分量可以全面表示该点应力状况,亦即可以确定该点的应力状态。3.应力张量不变量如何表达?答:应力张量的三个不变量为其中、、为应力张量第一、第二、第三不变量。4.应力偏张量和应力球张量的物理意义是什么?答:应力:在外力的作用下,变形体内各质点就会产生相互作用的力,称为内力。单位面积上的内力称为应力,可采用截面法进行分析应力球张量:也称静水应力状态,其任何方向都是主方向,且主应力相同,均为平均应力。特点:在任何切平面上都没有切应力,所以不能使物体产生形状变化,而只能产生体积变化,即不能使物体产生塑性变形。应力偏张量:是由原应力张量分解出应力球张量后得到的。应力偏张量的切应力分量、主切应力、最大切应力及应力主轴等都与原应力张量相同。特点:应力偏张量只使物体产生形状变化,而不能产生体积变化。材料的塑性变形是由应力偏张量引起的。5.平面应力状态和纯切应力状态有何特点?答:平面应力状态的特点为:变形体内各质点与某坐标轴垂直的平面上没有应力。纯切应力状态:6.等效应力有何特点?写出其数学表达式。答:等效应力的特点:等效应力不能在特定微分平面上表示出来,但它可以在一定意义上"代表"整个应力状态中的偏张量部分,因而与材料的塑性变形密切有关。人们把它称为广义应力或应力强度。等效应力也是一个不变量。其数学表达式如下:等效应力在主轴坐标系中定义为在任意坐标系中定义为7.已知受力物体内一点的应力张量为〔MPa,试求外法线方向余弦为l=m=1/2,n=的斜切面上的全应力、正应力和切应力。解:设全应力为S,,,分别为S在三轴中的分量,则有:=50+50+80=106.6=50+0-75=-28.0=80-75-30=-18.7则得到S=111.79MPa则得到=26.1MPa而则得到=108.7MPa8.已知受力体内一点的应力张量分别为①,②,③<MPa>1画出该点的应力单元体;2求出该点的应力张量不变量、主应力及主方向、主切应力、最大切应力、等效应力、应力偏张量和应力球张量;3画出该点的应力莫尔圆。解:1略2在①状态下:J=++=10J=-<++>+++=200J=+2-<++>=0式和由=20,=0,=-10代入公式对于=20时:对于=0时:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产认购专项协议范本
- 2024年成品油销售协议模板
- 2023-2024学年珠海市全国大联考(江苏卷)高三第二次数学试题试卷
- 2024年高效代理合作招募协议模板
- 2024年幼教岗位聘用协议范本
- 彩钢瓦安装工程协议模板2024年
- 2024年海水产品长期供应协议模板
- 2024年度润滑油分销协议范本
- 文书模板-《硬件设计合同》
- 2024房产居间服务协议模板
- 微积分方法建模12传染病模型数学建模案例分析
- 卫浴产品世界各国认证介绍
- 江苏省职工代表大会操作办法.doc
- 湘教版小学音乐五年级上册教学计划
- sch壁厚等级对照表
- 高新技术企业认定自我评价表
- 药物分类目录
- 中石油-细节管理手册 03
- 柿子品种介绍PPT课件
- 全国重点文物保护单位保护项目安防消防防雷计划书
- 护士对预防患者跌倒的问卷调查表
评论
0/150
提交评论