中考数学二轮培优复习几何专项练习:相似模型-母子型相似(含解析)_第1页
中考数学二轮培优复习几何专项练习:相似模型-母子型相似(含解析)_第2页
中考数学二轮培优复习几何专项练习:相似模型-母子型相似(含解析)_第3页
中考数学二轮培优复习几何专项练习:相似模型-母子型相似(含解析)_第4页
中考数学二轮培优复习几何专项练习:相似模型-母子型相似(含解析)_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page22页,共=sectionpages22页资料整理【淘宝店铺:向阳百分百】试卷第=page11页,共=sectionpages11页资料整理【淘宝店铺:向阳百分百】中考数学几何专项练习:相似模型--母子型相似一、解答题1.如图,SKIPIF1<0中,点SKIPIF1<0在边SKIPIF1<0上,且SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的长为.【答案】2【分析】由∠ACD=∠ABC、∠A=∠A,即可得出△ABC∽△ACD,根据相似三角形的性质可得出SKIPIF1<0,代入AC、AD的值可求出AB的长,再根据BD=AB-AD即可求出结论.【详解】解:∵∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∴SKIPIF1<0.∵AC=SKIPIF1<0,AD=1,∴SKIPIF1<0,∴AB=3,∴BD=AB-AD=3-1=2.故答案为2【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的判定定理是解题的关键.2.如图,点D是△ABC的边AB上一点,∠ABC=∠ACD.(1)求证:△ABC∽△ACD;(2)当AD=2,AB=3时,求AC的长.【答案】(1)见解析(2)AC的长为SKIPIF1<0.【分析】(1)由∠ABC=∠ACD及∠A=∠A,可证出△ABC∽△ACD;(2)利用相似三角形的性质,可求出AC的长.【详解】(1)证明:∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD;(2)解:∵△ABC∽△ACD,∴SKIPIF1<0,即SKIPIF1<0,∴AC=SKIPIF1<0(负值已舍).∴AC的长为SKIPIF1<0.【点睛】本题考查了相似三角形的判定与性质,解题的关键是:(1)利用“两角对应相等,两个三角形相似”证出△ABC∽△ACD;(2)利用相似三角形的对应边成比例,求出AC的长.3.【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【答案】(1)见解析;(2)AD=SKIPIF1<0.【分析】(1)证明△ADC∽△ACB,即可得出结论;(2)证明△BFE∽△BCF,得出BF2=BE•BC,求出BC,则可求出AD.【详解】(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴SKIPIF1<0,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴SKIPIF1<0,∴BF2=BE•BC,∴BC=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴AD=SKIPIF1<0.【点睛】本题主要考查了相似三角形的判定与性质,平行四边形的判定与性质等知识,正确掌握相似三角形的判定方法是解题关键.4.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,分别交SKIPIF1<0于点SKIPIF1<0.(1)求证:SKIPIF1<0;(2)求证:SKIPIF1<0.【答案】(1)见解析(2)见解析【分析】(1)根据等腰三角形的性质,可得SKIPIF1<0,再由线段垂直平分线的性质可得SKIPIF1<0,从而得到SKIPIF1<0,进而得到SKIPIF1<0,即可求证;(2)先证明SKIPIF1<0,从而得到SKIPIF1<0,再由SKIPIF1<0,即可求证.(1)证明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0垂直平分AB,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)证明:由(1)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质,相似三角形的性质和判定,熟练掌握等腰三角形的性质,线段垂直平分线的性质,相似三角形的性质和判定定理是解题的关键.5.如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,SKIPIF1<0于点G,SKIPIF1<0于点F,SKIPIF1<0.(1)求证:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求CD的值.【答案】(1)见解析(2)SKIPIF1<0【分析】(1)先根据垂直的定义推出SKIPIF1<0,SKIPIF1<0,再由SKIPIF1<0即可推出SKIPIF1<0,最后根据SKIPIF1<0,即可证明SKIPIF1<0;(2)由相似三角形的性质得到SKIPIF1<0,由此求出AB的长即可得到答案.【详解】(1)解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)解:∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.【点睛】本题主要考查了相似三角形的性质与判定,熟知相似三角形的性质与判定条件是解题的关键.6.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,如果△ABD的面积为15,(1)求证:△DAC∽△ABC;(2)求△ACD的面积.【答案】(1)见解析(2)△ACD的面积为5【分析】(1)由∠DAC=∠B,SKIPIF1<0即可证明△DAC∽△ABC;(2)设△ACD的面积为S,根据相似三角形面积比等于相似比的平方,列出方程求解即可.【详解】(1)证明:∵∠DAC=∠B,∠C=∠C,∴△DAC∽△ABC;(2)设△ACD的面积为S,∵△ABD的面积为15.∴△ABC的面积为15+S,∵△DAC∽△ABC,∴SKIPIF1<0,∴SKIPIF1<0,解得S=5,∴△ACD的面积为5.【点睛】此题考查了相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定.7.如图,在菱形SKIPIF1<0中,SKIPIF1<0为边SKIPIF1<0延长线上一点,连接SKIPIF1<0分别交SKIPIF1<0和SKIPIF1<0于SKIPIF1<0和SKIPIF1<0两点.(1)求证:SKIPIF1<0;(2)求证:SKIPIF1<0;(3)已知SKIPIF1<0,SKIPIF1<0.求当该菱形SKIPIF1<0改变为正方形,其余条件不变时正方形的边长.【答案】(1)见解析(2)见解析(3)SKIPIF1<0【分析】(1)只需证明SKIPIF1<0即可得到SKIPIF1<0.(2)想证明SKIPIF1<0,通过观察SKIPIF1<0为比例中项,只需证明SKIPIF1<0,即可到得答案.(3)根据学过的知识,出现比例中项的只有在三角形相似这个章节,所以只要证明SKIPIF1<0即可到得答案.【详解】(1)证明:SKIPIF1<0四边形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(2)证明:SKIPIF1<0四边形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(3)该菱形SKIPIF1<0改变为正方形时,由(2)知:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是正方形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0中,由勾股定理可得正方SKIPIF1<0的边长SKIPIF1<0.【点睛】本题考查了三角形全等、相似的内容,熟练掌握三角形全等及相似的证明方法是解决此题的关键.8.如图,点P是菱形SKIPIF1<0的对角线SKIPIF1<0上一点,连接SKIPIF1<0并延长交SKIPIF1<0于点E,交SKIPIF1<0的延长线于点F.(1)求证:SKIPIF1<0;(2)求证:SKIPIF1<0;(3)若SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析(2)见解析(3)SKIPIF1<0的长为SKIPIF1<0.【分析】(1)根据菱形的性质,利用SKIPIF1<0即可证明SKIPIF1<0;(2)根据菱形的性质,全等三角形的性质推出SKIPIF1<0,即可证明SKIPIF1<0;(3)根据相似三角形的性质结合条件可求得SKIPIF1<0,再根据全等三角形的性质即可求解.【详解】(1)证明:∵四边形SKIPIF1<0是菱形,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0;(2)证明:∵四边形SKIPIF1<0是菱形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,

∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(3)解:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0的长为SKIPIF1<0.【点睛】本题主要考查了菱形,全等三角形,相似三角形,熟练掌握菱形的性质,全等三角形的判定及性质,相似三角形的判定及性质,是解题的关键.9.(1)【基础模型】:如图1,在SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0上一点,SKIPIF1<0.求证:SKIPIF1<0.(2)【尝试应用】:如图2,在平行四边形SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0上一点,SKIPIF1<0为SKIPIF1<0延长线上一点,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的长.(3)【更上层楼】:如图3,在菱形SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0上一点,SKIPIF1<0是SKIPIF1<0内一点,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,请直接写出菱形SKIPIF1<0的边长.

【答案】(1)见解析;(2)9;(3)SKIPIF1<0【分析】(1)直接利用两个角对应相等证明SKIPIF1<0即可得到结论;(2)首先说明SKIPIF1<0,得SKIPIF1<0,求出SKIPIF1<0的长,再利用平行四边形的性质可得SKIPIF1<0的长;(3)延长SKIPIF1<0交于SKIPIF1<0,利用两组对边分别平行可得四边形SKIPIF1<0是平行四边形,得SKIPIF1<0,在利用SKIPIF1<0,得SKIPIF1<0,代入化简即可.【详解】解:(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0四边形SKIPIF1<0是平行四边形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)如图所示,延长SKIPIF1<0交于SKIPIF1<0,

SKIPIF1<0四边形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是平行四边形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴菱形SKIPIF1<0的边长为SKIPIF1<0.【点睛】本题考查了相似综合题,主要考查了相似三角形的判定与性质,菱形的性质,平行四边形的判定与性质,熟练掌握共边共角三角形相似是解题的关键.10.如图,在△ABC中,D是BC上的点,E是AD上一点,且SKIPIF1<0,∠BAD=∠ECA.(1)求证:AC2=BC•CD;(2)若AD是△ABC的中线,求SKIPIF1<0的值.【答案】(1)证明见解析;(2)SKIPIF1<0【分析】(1)首先利用相似三角形的判定得出SKIPIF1<0,得SKIPIF1<0,进而求出SKIPIF1<0,再利用相似三角形的性质得出答案即可;(2)由SKIPIF1<0可证SKIPIF1<0,进而得出SKIPIF1<0,再由(1)可证SKIPIF1<0,由此即可得出线段之间关系.【详解】(1)证明:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(2)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0AD是△ABC的中线,SKIPIF1<0,SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0.【点睛】此题主要考查了相似三角形的判定与性质以及重心的性质等知识,根据已知得出SKIPIF1<0是解题关键.11.解答下列各题:(1)[基础巩固]如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.(2)[尝试应用]如图2,在平行四边形ABCD中,F为AB上一点,E为BC延长线上一点,∠AEF=∠D.若AE=6,BF=5,求CD的长.(3)[拓展提高]如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=4EF,∠EDF=SKIPIF1<0∠BAD,AE=3,DF=4,求菱形ABCD的边长.【答案】(1)见解析;(2)9;(3)5【分析】(1)证明SKIPIF1<0,利用对应边相似求解.(2)证明SKIPIF1<0,设SKIPIF1<0,利用对应边关系列出方程求解.(3)延长SKIPIF1<0,交于点SKIPIF1<0,证明SKIPIF1<0,表示对应关系SKIPIF1<0,再利用SKIPIF1<0.【详解】解:(1)证明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)∵四边形ABCD是平行四边形,∴SKIPIF1<0.∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.设SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0(舍去).∴SKIPIF1<0,即SKIPIF1<0;(3)如图,延长SKIPIF1<0,交于点SKIPIF1<0,∵四边形SKIPIF1<0是菱形,∴SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0∥SKIPIF1<0,∴四边形SKIPIF1<0为平行四边形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.∴菱形SKIPIF1<0的边长为5.【点睛】本题考查了相似三角形的运用以及菱形的性质,利用相似比求解即可.12.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)求证:△APF∽△EPC;(2)求证:PA2=PG•PF(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.【答案】(1)证明见解析;(2)证明见解析;(3)AG=SKIPIF1<0.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)证明△APG∽△FPA,即可解决问题.(3)如图2中,设正方形的边长为2a.想办法用a表示AG,EG,GP,证明AG2=GP•GE,由此构建方程求出a,即可解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACB=45°,由旋转的性质可知,AF=AE,∠FAE=90°,∴∠AFP=∠ECP=45°,∵∠APF=∠EPC,∴△APF∽△EPC;(2)证明:∵四边形ABCD是正方形,∴∠CAB=45°,∵∠AFE=45°,∴∠PAG=∠AFP,∵∠APG=∠FPA,∴△APG∽△FPA,∴SKIPIF1<0,∴PA2=PG•PF;(3)解:如图2中,设正方形的边长为2a.∵△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF=SKIPIF1<0,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=SKIPIF1<0a,AG=SKIPIF1<0a,GE=SKIPIF1<0,∵∠GAP=∠AEG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴SKIPIF1<0,∴AG2=GP•GE,∴(SKIPIF1<0a)2=(SKIPIF1<0a-1)•SKIPIF1<0a,∴a=SKIPIF1<0,∴AG=SKIPIF1<0×SKIPIF1<0=SKIPIF1<0.【点睛】本题属于相似形综合题,考查了正方形的性质,相似三角形的判定和性质,旋转变换,勾股定理,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.13.如图,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.点SKIPIF1<0从点SKIPIF1<0出发,以SKIPIF1<0的速度沿SKIPIF1<0向点SKIPIF1<0匀速运动,同时点SKIPIF1<0从点SKIPIF1<0出发,以SKIPIF1<0的速度沿SKIPIF1<0向点SKIPIF1<0匀速运动,当一个点到达终点时,另一个点随之停止.(1)求经过几秒后,SKIPIF1<0的面积等于SKIPIF1<0面积的SKIPIF1<0?(2)经过几秒,SKIPIF1<0与SKIPIF1<0相似?【答案】(1)经过3秒后,SKIPIF1<0的面积等于SKIPIF1<0面积的SKIPIF1<0;(2)经过SKIPIF1<0秒或SKIPIF1<0秒时,SKIPIF1<0与SKIPIF1<0相似【分析】(1)分别表示出线段PC和线段CQ的长后利用SKIPIF1<0列出方程求解;(2)设运动时间为SKIPIF1<0秒,SKIPIF1<0与SKIPIF1<0相似,当SKIPIF1<0与SKIPIF1<0相似时,则有SKIPIF1<0或SKIPIF1<0,分别代入可得到关于t的方程,可求得t的值.【详解】(1)设经过x秒,SKIPIF1<0的面积等于SKIPIF1<0面积的SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,答:经过3秒后,SKIPIF1<0的面积等于SKIPIF1<0面积的SKIPIF1<0;(2)设经过t秒,SKIPIF1<0与SKIPIF1<0相似,因为SKIPIF1<0,所以分为两种情况:①SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,②SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,答:经过SKIPIF1<0秒或SKIPIF1<0秒时,SKIPIF1<0与SKIPIF1<0相似.【点睛】本题考查一元二次方程的应用,相似三角形的判定与性质,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14.如图,在正方形ABCD中,点G是对角线上一点,CG的延长线交AB于点E,交DA的延长线于点F,连接AG.(1)求证:AG=CG;(2)求证:△AEG∽△FAG;(3)若GE•GF=9,求CG的长.【答案】(1)见解析;(2)见解析;(3)CG=3【分析】(1)根据正方形的性质得到∠ADB=∠CDB=45°,AD=CD,从而利用全等三角形的判定定理推出△ADG≌△CDG(SAS),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD∥CB,推出∠FCB=∠F,由(1)可知△ADG≌△CDG,利用全等三角形的性质得到∠DAG=∠DCG,结合图形根据角之间的和差关系∠DAB−∠DAG=∠DCB−∠DCG,推出∠BCF=∠BAG,从而结合图形可利用相似三角形的判定定理得到△AEG∽△FAG,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD是正方形ABCD的对角线,∴∠ADB=∠CDB=45°,又AD=CD,在△ADG和△CDG中,SKIPIF1<0,∴△ADG≌△CDG(SAS),∴AG=CG;(2)解:∵四边形ABCD是正方形,∴AD∥CB,∴∠FCB=∠F,由(1)可知△ADG≌△CDG,∴∠DAG=∠DCG,∴∠DAB−∠DAG=∠DCB−∠DCG,即∠BCF=∠BAG,∴∠EAG=∠F,又∠EGA=∠AGF,∴△AEG∽△FAG;(3)∵△AEG∽△FAG,∴SKIPIF1<0,即GA2=GE•GF,∴GA=3或GA=−3(舍去),根据(1)中的结论AG=CG,∴CG=3.【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的性质,注意运用数形结合的思想方法,从图形中寻找角之间的和差关系.15.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,联结DB,线段AE⊥线段BD交BC于点E交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC.求证:BE=CE.【答案】(1)见解析;(2)见解析【分析】(1)先证明SKIPIF1<0,结合SKIPIF1<0证明SKIPIF1<0可得结论;(2)证明SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0从而可得结论.【详解】解:(1)证明:∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0(2)在SKIPIF1<0中,点D是斜边SKIPIF1<0的中点∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由(1)得SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0【点睛】本题主要考查了相似三角形的性质与判定,证明SKIPIF1<0是解答本题的关键.16.如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,连接DE、DC,DE交AC于点G,且DE=DC.(1)请证明∠ACD=∠BDE;(2)若AB=mAD,求SKIPIF1<0的值(用含m的式子表示)(3)如图2,将△ABC沿BC翻折,若点A的对应点A'恰好落在DE的延长线上,求SKIPIF1<0的值.【答案】(1)见解析;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)根据等腰三角形的性质以及三角形的外角性质即可证得SKIPIF1<0;(2)过点E作SKIPIF1<0交AB于点F,先证明SKIPIF1<0,由此可得SKIPIF1<0,再根据SKIPIF1<0即可证得SKIPIF1<0;(3)设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,先证明SKIPIF1<0,由此可得SKIPIF1<0,再根据等腰三角形的性质以及翻折的性质可得SKIPIF1<0,SKIPIF1<0,由此可得SKIPIF1<0,由此计算即可求得答案.【详解】解:(1)∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0(2)如图,过点E作SKIPIF1<0交AB于点F,∴SKIPIF1<0,在SKIPIF1<0与SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(3)设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,由(1)可知SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0(舍负),∵SKIPIF1<0,∴SKIPIF1<0,由题意可得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同理可得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0(舍负),∴SKIPIF1<0【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,平行线分线段成比例定理,相似三角形的判定与性质以及翻折的性质,熟练掌握它们的基本性质是解决本题的关键.17.如图,在菱形ABCD中,DE⊥BC交BC的延长线于点E,连结AE交BD于点F,交CD于点G,连结CF.(1)求证:AF=CF;(2)求证:AF2=EF•GF;(3)若菱形ABCD的边长为2,∠BAD=120°,求FG的长.【答案】(1)答案见解析(2)答案见解析(3)SKIPIF1<0【分析】(1)先由菱形的性质得到AB=BC,∠ABF=∠CBF,然后结合BF=BF,得到△ABF≌△CBF,进而得到AF=CF;(2)先由菱形得到∠BAD=∠BCD,AD//BE,从而得到∠DAF=∠DCF,∠DAF=∠FEC,再结合∠CFG=∠EFC,得到△CFG∽△EFC,然后利用相似三角形的性质得到CF2=EF×GF,最后结合AF=CF,得到AF2=EF×GF;(3)先由∠BAD=120°,得到∠DCE=60°,然后结合菱形边长为2得到CD的长,进而利用DE⊥BC,得到CE、AE的长,然后通过证明△FAD∽△FEB,△GAD∽△GEC,进而得到AF、AG的长,最后得到FG的长.【详解】(1)解:证明:∵四边形ABCD是菱形,∴AB=BC,∠ABF=∠CBF,∵BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF;(2)证明:∵四边形ABCD是菱形,∴∠BAD=∠BCD,AD//BE,∴∠DAF=∠FEC,∵△ABF≌△CBF,∴∠BAF=∠BCF,∴∠DAF=∠DCF,∴∠GCF=∠CEF,∵∠CFG=∠EFC,∴△CFG∽△EFC,∴SKIPIF1<0,∴CF2=EF×GF,∵AF=CF,∴AF2=EF×GF;(3)∵∠BAD=120°,∴∠DCE=60°,∵菱形边长为2,∴CD=AD=2,∵DE⊥BC,∴∠ADE=∠CED=90°,∴∠CDE=30°,∴CE=SKIPIF1<0CD=1,DE=SKIPIF1<0,∴SKIPIF1<0,BE=BC+CE=2+1=3,∵AD//BE,∴△FAD∽△FEB,△GAD∽△GEC,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴FG=AG-AF=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0.【点睛】本题考查了菱形的性质、含30°角的直角三角形的三边关系、勾股定理、全等三角形的判定与性质、相似三角形的判定与性质,解题的关键是熟知菱形的性质得到相关的角相等.18.如图,在正方形ABCD中,点G是对角线上一点,CG的延长线交AB于点E,交DA的延长线于点F,连接AG.(1)求证:AG=CG;(2)若GE•GF=9,求CG的长.【答案】(1)见解析(2)CG=3.【分析】(1)根据正方形的性质得到∠ADB=∠CDB=45°,AD=CD,从而利用全等三角形的判定定理推出△ADG≌△CDG(SAS),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD∥CB,推出∠FCB=∠F,由(1)可知△ADG≌△CDG,利用全等三角形的性质得到∠DAG=∠DCG,结合图形根据角之间的和差关系∠DAB-∠DAG=∠DCB-∠DCG,推出∠BCF=∠BAG,从而结合图形可利用相似三角形的判定定理即可得到△AEG∽△FAG;再根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD是正方形ABCD的对角线,∴∠ADB=∠CDB=45°,又AD=CD,在△ADG和△CDG中,SKIPIF1<0,∴△ADG≌△CDG(SAS),∴AG=CG;(2)证明:∵四边形ABCD是正方形,∴AD∥CB,∴∠FCB=∠F,由(1)可知△ADG≌△CDG,∴∠DAG=∠DCG,∴∠DAB-∠DAG=∠DCB-∠DCG,即∠BCF=∠BAG,∴∠EAG=∠F,又∠EGA=∠AGF,∴△AEG∽△FAG,∴SKIPIF1<0,即GA2=GE•GF=9,∴GA=3或GA=-3(舍去),根据(1)中的结论得AG=CG,∴CG=3.【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的性质,注意运用数形结合的思想方法,从图形中寻找角之间的和差关系.19.如图,△ABC中,∠ACB=90°,CB=CA,CE⊥AB于E,点F是CE上一点,连接AF并延长交BC于点D,CG⊥AD于点G,连接EG.(1)求证:CD2=DG•DA;(2)如图1,若点D是BC中点,求证:CF=2EF;(3)如图2,若GC=2,GE=2SKIPIF1<0,求证:点F是CE中点.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)先证明△ACD∽△CGD,根据相似三角形性质即可证得结论;(2)如图1,过E作EH∥AD交BC于点H,运用平行线分线段成比例定理即可证得结论;(3)根据∠AGC=∠AEC=90°,得出A、C、G、E四点共圆,过点E作EM⊥AD于点M,可得△EGM是等腰直角三角形,再证明△CGF≌△EMF,即可证明F是CE中点.【详解】(1)证明:∵CG⊥AD,∠ACB=90°,∴∠CGD=∠ACB=90°,∵∠CDA=∠CDG,∴△ACD∽△CGD,∴CD:DG=DA:CD,∴CD2=DG•DA;(2)如图1,过E作EH∥AD交BC于点H,∵HE∥AD,∴BH:HD=BE:EA,CD:HD=CF:EF,∵CB=CA,∠ACB=90°,CE⊥AB,∴E为AB的中点,∴BE:EA=1,∴BH:HD=BE:EA=1∵D为BD的中点∴CD=BD,∴CD:HD=2,∵EH∥AD∴CD:HD=CF:EF=2∴CF=2EF.(3)∵CB=CA,∠ACB=90°,∴∠BAC=45°,∵CE⊥AB,CG⊥AD,∴∠AGC=∠AEC=90°,∠ACE=45°,∴A、C、G、E四点共圆,∴∠EGF=∠ACF=45°,过点E作EM⊥AD于点M,∴△EGM是等腰直角三角形,EM=GE•sin45°=2SKIPIF1<0=2,∵CG=2,∴CG=EM,∵∠CFG=∠EFM,∠CGF=∠EMF=90°,∴△CGF≌△EMF,∴CF=EF,即点F是CE中点.【点睛】∴本题考查了等腰直角三角形性质与判定,全等三角形判定和性质,相似三角形的判定和性质、勾股定理、平行线分线段成比例定理、解直角三角形等知识,解题的关键是学会添加常用辅助线并结合相关知识进行解题.20.模型建立:(1)如图1,在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0上一点,SKIPIF1<0,求证:SKIPIF1<0;(2)类比探究:如图2,在菱形SKIPIF1<0中,SKIPIF1<0、SKIPIF1<0分别为边SKIPIF1<0、SKIPIF1<0上的点,且SKIPIF1<0,射线SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0,射线SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0.①求证:SKIPIF1<0;②若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析(2)①见解析;②SKIPIF1<0【分析】(1)证明SKIPIF1<0,根据相似三角形的性质即可得出结论;(2)①连接SKIPIF1<0,证明SKIPIF1<0,根据相似三角形的性质得出SKIPIF1<0;②由①得:SKIPIF1<0,得出SKIPIF1<0,由①可知,SKIPIF1<0,得出SKIPIF1<0,证明SKIPIF1<0,得出SKIPIF1<0,进而即可求解.【详解】(1)证明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(2)①证明:如图2,连接SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是菱形,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;②解:由①得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由①可知,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,由①得:SKIPIF1<0,同理得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由①知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0.【点睛】本题考查了相似三角形的性质与判定,菱形的性质,熟练掌握相似三角形的性质与判定是解题的关键.21.已知矩形SKIPIF1<0,点E、F分别在SKIPIF1<0、SKIPIF1<0边上运动,连接SKIPIF1<0、SKIPIF1<0,记SKIPIF1<0、SKIPIF1<0交于点P.-

(1)如图1,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求线段SKIPIF1<0的长度;(2)如图2,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0;(3)如图3,连接SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的长度.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)根据SKIPIF1<0得出SKIPIF1<0,再证明SKIPIF1<0,根据相似三角形的性质即可进行解答;(2)根据矩形的性质可得SKIPIF1<0,得出SKIPIF1<0,进而得出SKIPIF1<0,则SKIPIF1<0,即可得出结论;(3)过点A作SKIPIF1<0于点H,过点P作SKIPIF1<0于点N,交SKIPIF1<0于点M,设SKIPIF1<0,则SKIPIF1<0,得出SKIPIF1<0,根据SKIPIF1<0,得出SKIPIF1<0,进而得出SKIPIF1<0,则SKIPIF1<0,证明SKIPIF1<0根据SKIPIF1<0,列出方程求解即可.【详解】(1)解:∵四边形SKIPIF1<0为矩形,∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)解:∵四边形SKIPIF1<0为矩形,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,则SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0.(3)解:过点A作SKIPIF1<0于点H,过点P作SKIPIF1<0于点N,交SKIPIF1<0于点M,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,由(2)可得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴四边形SKIPIF1<0为矩形,∴SKIPIF1<0,则SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0.

【点睛】本题主要考查了矩形的性质,相似三角形的判定和性质,解题的关键是掌握矩形对边相等,四个角都为直角,相似三角形对应边成比例.22.已知在菱形ABCD中,∠BAD=120°,点E为射线BC上的一个动点,AE与边CD交于点G.(1)如图1,连接对角线BD交AE于点F,连接CF,若AF2=CG•CD,试求∠CFE的度数;(2)如图2,点F为AE上一点,且∠ADF=∠AED,若菱形的边长为2,则当DE⊥BC时,求△CFE的面积;(3)如图3,当点E在射线BC上运动时,试求SKIPIF1<0的最小值.【答案】(1)30°;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)如图1,证明△ABF≌△CBF(SAS),得AF=CF,再证明△FCG∽△DCF,根据相似三角形的性质可得∠CFE=∠FDC=30°;(2)如图2,过点F作MN⊥BC于N,交AD于M,根据直角三角形30°角的性质得:CE=1,根据勾股定理计算DE和AE的长,证明∠AFD∽△ADE,列比例式可得AF和EF的长,证明△AFM∽△EFN,得FN的长,根据三角形的面积公式可得结论;(3)如图3,过点E作EH⊥CD于H,过点A作AN⊥BC于N,设菱形ABCD的边长为a,CE=x,分别计算AE2和DE2,变形后可得当a=x时,SKIPIF1<0有最小值.【详解】解:(1)如图1,∵SKIPIF1<0,∴SKIPIF1<0,∵四边形ABCD是菱形,∴AB=BC,∠ABD=∠CBD,∵BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF,∴SKIPIF1<0,∵∠FCG=∠FCG,∴△FCG∽△DCF,∴∠CFE=∠FDC,∵AB∥CD,∴∠BAD+∠ADC=180°,∵∠BAD=120°,∴∠ADC=60°,∵四边形ABCD是菱形,∴∠FDCSKIPIF1<0∠ADC=30°,∴∠CFE=30°;(2)如图2,过点F作MN⊥BC于N,交AD于M,∵AD∥BC,∴MN⊥AD,Rt△DCE中,∠DCE=180°﹣120°=60°,∴∠CDE=30°,∵CD=2,∴CE=1,DESKIPIF1<0,Rt△ADE中,AESKIPIF1<0,∵∠ADF=∠AED,∠FAD=∠FAD,∴∠AFD∽△ADE,∴SKIPIF1<0,即SKIPIF1<0,∴AFSKIPIF1<0,∴EFSKIPIF1<0,∵AD∥BC,∴△AFM∽△EFN,∴SKIPIF1<0,∵MN=DESKIPIF1<0,∴FNSKIPIF1<0,∴S△CEFSKIPIF1<0;(3)如图3,过点E作EH⊥CD于H,过点A作AN⊥BC于N,设菱形ABCD的边长为a,CE=x,在Rt△CEH中,∠ECH=60°,∴∠CEH=30°,∴CHSKIPIF1<0x,EHSKIPIF1<0x,∴DH=aSKIPIF1<0x,在Rt△DEH中,DE2=DH2+EH2=SKIPIF1<0+SKIPIF1<0=a2﹣ax+x2,在Rt△ABN中,∠B=60°,AB=a,∴∠BAN=30°,∴BNSKIPIF1<0a,ANSKIPIF1<0a,∴CN=BC﹣BNSKIPIF1<0a,∴EN=EC+CNSKIPIF1<0a+x,Rt△ANE中,AE2=AN2+EN2=SKIPIF1<0+SKIPIF1<0=a2+ax+x2,∴SKIPIF1<0(a>0,x>0),∴当SK

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论