2024年中考数学专题训练 专题06 四点共圆(知识解读)_第1页
2024年中考数学专题训练 专题06 四点共圆(知识解读)_第2页
2024年中考数学专题训练 专题06 四点共圆(知识解读)_第3页
2024年中考数学专题训练 专题06 四点共圆(知识解读)_第4页
2024年中考数学专题训练 专题06 四点共圆(知识解读)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题06四点共圆(知识解读)【专题说明】四点共圆在圆内接四边形综合问题的求解中占据了重要地位,都是在大题中结合题目的几何背景进行综合考查,重在考查学生对知识的应用能力.考查的基本类型有:利用四点共圆证相似,利用四点共圆求最值,这些问题大都利用转化思想,将几何问题转化为四点共圆问题,使题目能简单求解.【方法技巧】1.四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.四点共圆的性质(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等.(2)圆内接四边形的对角互补.(3)圆内接四边形的一个外角等于它的内对角.3.四点共圆的判定(1)用“角”判定:①一组对角互补的四边形的四个顶点在同一个圆上;②一个外角等于它的内对角的四边形的四个顶点在同一个圆上;③如果两个三角形有一条公共边,且位于公共边同侧的两个角相等,则这两个三角形的四个顶点在同一个圆上.(2)“等线段”判定:四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C,D四点共圆.(3)用“比例线段”判定:若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则A,B,C,D四点共圆.模型解读:模型1:对角互补型:若∠A+∠C=180º或∠B+∠D=180º,则A、B、C、D四点共圆模型2:同侧等角型(1)若∠A=∠C,则A、B、C、D四点共圆(2)手拉手(双子型)中的四点共圆条件:△OCD∽△OAB结论:①△OAC∽△OBD②AC与BD交于点E,必有∠AEB=∠AOB;③点E在△OAB的外接圆上,即O、A、B、E四点共圆.同理:ODCE也四点共圆.模型3:直径是圆中最长的弦1.定圆中最长的弦是直径;2.经过圆中定点最短的弦是垂直于过这点直径的弦;3.定弦中最小的圆是以该弦为直径的圆。【典例分析】【模型1:对角互补型】【典例1】如图,正方形ABCD绕点A逆时针旋转到正方形AEFG,连接BE,延长BE交于CF于点M,求证:M是线段CF的中点.【变式1】如图,在矩形ABCD中,AB=6,AD=8,P、E分别是线段AC、BC上的点,四边形PEFD为矩形,若AP=2,求CF的长。【模型2:同侧等角型】【典例2】在Rt△ABC中,∠ACB=90º,将△ABC绕点A顺时针旋转αº(0<α<180)得△ADE,∠AED=90º,直线BD与直线CE的交点为P.求证:PB=PD【模型3:直径是圆中最长的弦】【典例3】在△ABC中,∠ACB=90º,AC=6,BC=8,O为AB的中点,过O作OE⊥OF,OE、OF分别交射线AC,BC于E、F,则EF的最小值为?【变式3】如图,在⊙O中,直径AB=12,点D是圆上任意一点(A,B除外),点P为CD的中点,过点D作DE⊥AB于点E,连接AD,EP.求EP的最大值。【随堂精练】1.(2021秋•永泰县期中)如图,在Rt△ABC中,∠BAC=90°,∠ABC=40°,将△ABC绕A点顺时针旋转得到△ADE,使D点落在BC边上.(1)求∠BAD的度数;(2)求证:A,D,B,E四点共圆.2.如图,四边形ABCD是某高新区核心地块用地示意图,经测量得如下数据:AB=30km,BC=40km,∠B=120°,∠A+∠C=180°,请计算这块规划用地的最大面积.3.如图,已知AC=BC=4,点D是AB下方一点,且∠C=∠D=90°,求四边形ACBD面积的最大值. 专题06四点共圆(知识解读)【专题说明】四点共圆在圆内接四边形综合问题的求解中占据了重要地位,都是在大题中结合题目的几何背景进行综合考查,重在考查学生对知识的应用能力.考查的基本类型有:利用四点共圆证相似,利用四点共圆求最值,这些问题大都利用转化思想,将几何问题转化为四点共圆问题,使题目能简单求解.【方法技巧】1.四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.四点共圆的性质(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等.(2)圆内接四边形的对角互补.(3)圆内接四边形的一个外角等于它的内对角.3.四点共圆的判定(1)用“角”判定:①一组对角互补的四边形的四个顶点在同一个圆上;②一个外角等于它的内对角的四边形的四个顶点在同一个圆上;③如果两个三角形有一条公共边,且位于公共边同侧的两个角相等,则这两个三角形的四个顶点在同一个圆上.(2)“等线段”判定:四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C,D四点共圆.(3)用“比例线段”判定:若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则A,B,C,D四点共圆.模型解读:模型1:对角互补型:若∠A+∠C=180º或∠B+∠D=180º,则A、B、C、D四点共圆模型2:同侧等角型(1)若∠A=∠C,则A、B、C、D四点共圆(2)手拉手(双子型)中的四点共圆条件:△OCD∽△OAB结论:①△OAC∽△OBD②AC与BD交于点E,必有∠AEB=∠AOB;③点E在△OAB的外接圆上,即O、A、B、E四点共圆.同理:ODCE也四点共圆.模型3:直径是圆中最长的弦1.定圆中最长的弦是直径;2.经过圆中定点最短的弦是垂直于过这点直径的弦;3.定弦中最小的圆是以该弦为直径的圆。【典例分析】【模型1:对角互补型】【典例1】如图,正方形ABCD绕点A逆时针旋转到正方形AEFG,连接BE,延长BE交于CF于点M,求证:M是线段CF的中点.【简答】∵AC=AF,AB=AE且∠BAE=∠CAF∴△AEB∽△AFC,∴∠ABE=∠ACF,∴A、B、C、M四点共圆,∵∠ABC=90º,∴AC是直径,∴∠AMC=90º,∵AE=AC,∴AM垂直且平分CF(三线合一).【变式1】如图,在矩形ABCD中,AB=6,AD=8,P、E分别是线段AC、BC上的点,四边形PEFD为矩形,若AP=2,求CF的长。【解析】∠PEF=∠PDF=∠DCE=90º,知D,F,C,D,P共圆,如下图,由∠1=∠2,∠4=∠5,易得△APD∽△DCF,CF:AP=CD:AD,得CF=1.5。【模型2:同侧等角型】【典例2】在Rt△ABC中,∠ACB=90º,将△ABC绕点A顺时针旋转αº(0<α<180)得△ADE,∠AED=90º,直线BD与直线CE的交点为P.求证:PB=PD【解析】由旋转的性质得∠CAE=∠BAD=α,AC=AE,AB=AD,∴∠CEA=∠ADB∴A,D,E,P四点共圆∴∠APD=∠AED=90º∴AP⊥BD∴PB=PD【模型3:直径是圆中最长的弦】【典例3】在△ABC中,∠ACB=90º,AC=6,BC=8,O为AB的中点,过O作OE⊥OF,OE、OF分别交射线AC,BC于E、F,则EF的最小值为?【解析】∵∠EOF=∠C=90º,∴C,O均在以EF为直径的圆上∵EF是圆的直径,O、C均在圆上,且OC长度固定,要使EF最短,则圆最小,要使圆最小,由于OC为固定长度,则OC为直径时,圆最小,此时EF=CO=OA=OB=5(斜边上中线等于斜边一半)【变式3】如图,在⊙O中,直径AB=12,点D是圆上任意一点(A,B除外),点P为CD的中点,过点D作DE⊥AB于点E,连接AD,EP.求EP的最大值。【解析】延长DE交⊙O于点F,连接FC,利用三角形的中位线得出PE=0.5FC.当FC为⊙O的直径时,PE最大=6。【随堂精练】1.(2021秋•永泰县期中)如图,在Rt△ABC中,∠BAC=90°,∠ABC=40°,将△ABC绕A点顺时针旋转得到△ADE,使D点落在BC边上.(1)求∠BAD的度数;(2)求证:A,D,B,E四点共圆.【解答】(1)解:由旋转知,AD=AC,∵∠BAC=90°,∠ABC=40°,∴∠ADC=∠C=90°﹣∠ABC=90°﹣40°=50°,∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣50°﹣50°=80°,∴∠BAD=∠BAC﹣∠DAC=90°﹣80°=10°;(2)证明:连接BE,由旋转知,AB=AE,∠EAD=∠BAC=90°,∵∠BAD=10°,∴∠EAB=∠EAD﹣∠BAD=90°﹣10°=80°,∴∠EBA=∠BEA=×(180°﹣∠EAB)=×(180°﹣80°)=50°,∴∠EBD=∠EBA+∠ABC=50°+40°=90°,即△EBD是以ED为斜边的直角三角形,又∵△EAD也是以ED边为斜边的直角三角形,∴A,D,B,E四点在以ED为直径的圆上,即A,D,B,E四点共圆.2.如图,四边形ABCD是某高新区核心地块用地示意图,经测量得如下数据:AB=30km,BC=40km,∠B=120°,∠A+∠C=180°,请计算这块规划用地的最大面积.【解答】解:∵四边形ABCD中,∠DAC+∠DCB=180°,∴A、B、C、D四点共圆,如图,延长CB,过点A作AE⊥CB于点E,连接AC,过点D作DF⊥AC于点F.∵∠ABC=120°,∴∠ADC=∠ABE=60°,∴BE=AB=15km,AE==15km,CE=40+15=55km,∴S△ABC===300km2.则当△ADC的面积最大时,四边形ABCD的面积最大.当AD=CD时,DF最大,此时四边形ABCD的面积最大.在Rt△ACE中,AC==10km,AF=AC=5km,∵∠ADF==30°,∴DF=AF=5km,∴S△ADC===925km2.300+925=1225km2.∴四边形ABCD的最大面积为1225km2.3.如图,已知AC=BC=4,点D是AB下方一点,且∠C=∠D=90°,求四边形ACBD面积的最大值.【解答】解:过点C作CE⊥AB,垂足为E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论