2024届天津市和平区二十一中八年级数学第二学期期末教学质量检测试题含解析_第1页
2024届天津市和平区二十一中八年级数学第二学期期末教学质量检测试题含解析_第2页
2024届天津市和平区二十一中八年级数学第二学期期末教学质量检测试题含解析_第3页
2024届天津市和平区二十一中八年级数学第二学期期末教学质量检测试题含解析_第4页
2024届天津市和平区二十一中八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届天津市和平区二十一中八年级数学第二学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在▱ABCD中,∠C=32°,则∠A的度数为()A.148° B.128° C.138° D.32°2.已知数据:2,﹣1,3,5,6,5,则这组数据的众数和极差分别是()A.5和7 B.6和7 C.5和3 D.6和33.如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为()A. B. C. D.4.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:身高(cm)170172175178180182185人数(个)2452431则该校排球队21名同学身高的众数和中位数分别是(单位:cm)()A.185,178 B.178,175 C.175,178 D.175,1755.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.已知点,,,在直线上,且,下列选项正确的是A. B. C. D.无法确定7.用配方法解方程x2﹣8x+7=0,配方后可得()A.(x﹣4)2=9 B.(x﹣4)2=23C.(x﹣4)2=16 D.(x+4)2=98.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>39.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手

平均数(环)

9.2

9.2

9.2

9.2

方差(环2)

0.035

0.015

0.025

0.027

则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁10.如图,在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:(1)如果∠BAC=90°,那么四边形AEDF是矩形(2)如果AD平分∠BAC,那么四边形AEDF是菱形(3)如果AD⊥BC且AB=AC,那么四边形AEDF是正方形.其中正确的有()A.3个 B.2个 C.1个 D.0个11.下列运算正确的是()A.-= B.C.×= D.12.计算:()A.5 B.7 C.-5 D.-7二、填空题(每题4分,共24分)13.如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.14.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.15.图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.16.一次函数的图象如图所示,当时,的取值范围是_______.17.当x=______时,分式的值是1.18.在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.三、解答题(共78分)19.(8分)某校2500名学生参加“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,从中抽取该校八年级(1)班全体同学捐献图书的数量,绘制如下统计图:请你根据以上统计图中的信息,解答下列问题:(1)补全条形统计图;(2)八(1)班全体同学所捐图书的中位数和众数分别是多少?(3)估计该校2500名学生共捐书多少册?20.(8分)(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点以及点均在格点上.①直接写出的长为______;②画出以为边,为对角线交点的平行四边形.(2)如图2,画出一个以为对角线,面积为6的矩形,且和均在格点上(、、、按顺时针方向排列).(3)如图3,正方形中,为上一点,在线段上找一点,使得.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)21.(8分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒(1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;(2)在同一个坐标系内分别画出(1)题中的两个函数的图象;(3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.22.(10分)为引导学生广泛阅读文学名著,某校在七年级、八年级开展了读书知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(分),并对数据进行整理、描述和分析.下面给出了部分信息.七年级:7497968998746576727899729776997499739874八年级:7688936578948968955089888989779487889291平均数、中位数、众数如表所示:根据以上信息,回答下列问题:(1)______,______,______;(2)该校对读书知识竞赛成绩不少于80分的学生授予“阅读小能手”称号,请你估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有______人;(3)结合以上数据,你认为哪个年级读书知识竞赛的总体成绩较好,说明理由.23.(10分)小芳和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小芳开始跑步中途改为步行.达到图书馆恰好用,小东骑自行车以的速度直接回家,两个离家的路程与各自离开出发地的时间之间的函数图象如图所示.(1)家与图书馆之间的路程为,小芳步行的速度为;(2)求小东离家的路程关于的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间24.(10分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.25.(12分)计算(1);(2)26.近年来,萧山区大力发展旅游业,跨湖桥遗址、湘湖二期三期、宋城千古情、河上民俗、大美进化……这些名词,相信同学们都耳熟能详了,因此近年来,我区的年游客接待量呈逐年稳步上升,2015年接待1800万人次,2015——2017年这三年累计接待游客高达5958万人次.(1)求萧山区2015——2017年年游客接待量的年平均增长率.(2)若继续呈该趋势增长,请预测2018年年游客接待量(近似到万人次).

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

根据平行四边形的性质:对角相等即可求出的度数.【题目详解】四边形是平行四边形,,,.故选:.【题目点拨】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.2、A【解题分析】

众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.【题目详解】解:这组数据的众数是5;极差是:;故选:A.【题目点拨】考查了众数和极差的概念.众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.3、C【解题分析】

如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【题目详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.【题目点拨】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.4、D【解题分析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【题目详解】解:因为175出现的次数最多,所以众数是:175cm;因为第十一个数是175,所以中位数是:175cm.故选:D.【题目点拨】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5、A【解题分析】

根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可.【题目详解】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选A.【题目点拨】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6、B【解题分析】

先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可作出判断.【题目详解】解:直线中,随的增大而增大,,.故选:.【题目点拨】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.7、A【解题分析】

首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【题目详解】解:x2﹣8x+7=0,x2﹣8x=﹣7,x2﹣8x+16=﹣7+16,(x﹣4)2=9,故选:A.【题目点拨】本题考查了解一元二次方程--配方法.配方法的一般步骤:

(1)把常数项移到等号的右边;

(2)把二次项的系数化为1;

(3)等式两边同时加上一次项系数一半的平方.

选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8、D【解题分析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【题目详解】∵一次函数,随的增大而增大,∴k-3>0,解得:k>3,故选D.【题目点拨】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握一次函数的性质是解题关键.9、B【解题分析】在平均数相同时方差越小则数据波动越小说明数据越稳定,10、B【解题分析】

解:因为DE∥CA,DF∥BA,所以四边形AEDF是平行四边形,如果∠BAC=90°,那么四边形AEDF是矩形,所以(1)正确;如果AD平分∠BAC,所以∠BAD=∠DAC,又DE∥CA,所以∠ADE=∠DAC,所以∠ADE=∠BAD,所以AE=ED,所以四边形AEDF是菱形,因此(2)正确;如果AD⊥BC且AB=AC,根据三线合一可得AD平分∠BAC,所以四边形AEDF是菱形,所以(3)错误;所以正确的有2个,故选B.【题目点拨】本题考查平行四边形的判定与性质;矩形的判定;菱形的判定;正方形的判定.11、D【解题分析】试题分析:根据二次根式的混合运算的法则及二次根式的性质依次分析各选项即可作出判断.解:A.与不是同类二次根式,无法化简,B.,C.,故错误;D.,本选项正确.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12、A【解题分析】

先利用二次根式的性质进行化简,然后再进行减法运算即可.【题目详解】=6-1=5,故选A.【题目点拨】本题考查了二次根式的化简,熟练掌握是解题的关键.二、填空题(每题4分,共24分)13、1【解题分析】分析:连接DE并延长交AB于H,证明△DCE≌△HAE,根据全等三角形的性质可得DE=HE,DC=AH,则EF是△DHB的中位线,再根据中位线的性质可得答案.详解:连接DE并延长交AB于H.∵CD∥AB,∴∠C=∠A,∵E是AC中点,∴DE=EH,在△DCE和△HAE中,∠C=∠A,CE=AE,∠CED=∠AEH,∴△DCE≌△HAE(ASA),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB-AH=AB-DC=2,∴EF=1.点睛:此题主要考查了全等三角形的判定与性质,以及三角形中位线性质,关键是正确画出辅助线,证明△DCE≌△HAE.14、1【解题分析】

利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【题目详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.15、乙乙槽中铁块的高度为14cm【解题分析】

根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.【题目详解】①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,故答案为乙,乙槽中铁块的高度为14cm.【题目点拨】本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.16、【解题分析】

根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.【题目详解】当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),∴x≤2,故答案为:x≤2.【题目点拨】本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.17、1【解题分析】

直接利用分式的值为零则分子为零进而得出答案.【题目详解】∵分式的值是1,∴x=1.故答案为:1.【题目点拨】此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.18、1【解题分析】

根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.【题目详解】解:由图可得,

这组数据分别是:24,24,1,1,1,30,

∵1出现的次数最多,

∴这组数据的众数是1.

故答案为:1.【题目点拨】本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.三、解答题(共78分)19、(1)见解析;(2)中位数是3本,众数是2本;(3)7850册【解题分析】

(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数,根据条形统计图求出捐4本的人数为,再画出图形即可;(2)根据中位数的定义求出第25、26个数的平均数即可,根据众数的定义求出出现的次数最多的数即可,(3)先求出八(1)班所捐图书的平均数,再乘以全校总人数2500即可.【题目详解】解:(1)∵被调查的总人数为15÷30%=50人,∴捐4册的有50﹣(10+15+7+5)=13人,补全图形如下:(2)∵共有50个数,∴八(1)班所捐图书的中位数是(2+4)÷2=3(本),∵2本出现了15次,出现的次数最多,∴众数是2本;(3)∵八(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,∴全校2500名学生共捐2500×=7850(本),答:全校2500名学生共捐7850册书.【题目点拨】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.20、解:(1)①;②详见解析;(2)详见解析;(2)详见解析【解题分析】

(1)①由勾股定理可得AB的长;②连接AO,CO并延长一倍得到,再顺次连接成平行四边形;(2)画一个对角线长,矩形两边长为,)的矩形即可;(2)连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.【题目详解】解:(1)①由勾股定理可得;②如图1.连接AO,CO并延长一倍得到,再顺次连接成平行四边形;(2)如图2(对角线长,矩形两边长为,).(2)如图2.连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.【题目点拨】本题考查了作图-作平行四边形和矩形,也考查了特殊四边形的性质.21、(1)y1==-7x+600,y2==3x+440(2)答案见解析(3)答案见解析【解题分析】

(1)根据两种盈利模式,分别列出y1、y2关于x的函数解析式;(2)利用描点法画出两函数图像;(3)由y1=y2,建立关于x的方程,解方程求出x的值,就可得到两函数的交点坐标,再利用一次函数的性质,就可得出当0≤x≤40时,y1随x的增大而增大,y2随x的增大而减小,可得到每一个自变量x都有唯一的一个y的值与之对应,由此可得出判断.【题目详解】(1)解:由题意得:y1=8x+15(40-x)=-7x+600,y2=14x+11(40-x)=3x+440;(2)解:如图,(3)解:当y1=y2时,-7x+600=3x+440解之:x=16∴x=16时,y=3×16+440=488当0≤x≤40时,y1随x的增大而增大,y2随x的增大而减小,∴∴每一个自变量x都有唯一的一个y的值与之对应,∴y是x的函数,当x=16时,y的最小值为488.【题目点拨】本题主要考查一次函数的应用,根据题意列出函数关系式并能熟练掌握一次函数的性质是解答本题的关键.22、(1)2,88.5,89;(2)460;(3)八年级读书知识竞赛的总体成绩较好,见解析.【解题分析】

(1)根据总数据可得a的值,根据中位数和众数的定义可得m和n的值;(2)分别计算该校七、八年级所有学生中获得“阅读小能手”称号的人数,相加可得结论;(3)根据平均数,众数和中位数这几方面的意义解答可得.【题目详解】解:(1)a=20-1-3-8-6=2,八年级20人的成绩排序后为:50,65,68,76,77,78,87,88,88,88,89,89,89,89,91,92,93,94,94,95,因为有20人,所以中位数为成绩排名第10和第11位的分数的平均数,观察成绩数据89分的人数最多,∴m==88.5,n=89,故答案为:2,88.5,89;(2),则估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有460人.故答案为:460;(3)∵八年级读书知识竞赛的总体成绩的众数高于七年级,且八年级的中位数89高于七年级的中位数74,说明八年级分数不低于89分的人数比七年级多,∴八年级读书知识竞赛的总体成绩较好.【题目点拨】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.23、(1)4000,100;(2),自变量的范围为;(3)两人相遇时间第8分钟.【解题分析】

(1)认真分析图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论