2024届江苏省苏州市苏州地区学校八年级数学第二学期期末调研试题含解析_第1页
2024届江苏省苏州市苏州地区学校八年级数学第二学期期末调研试题含解析_第2页
2024届江苏省苏州市苏州地区学校八年级数学第二学期期末调研试题含解析_第3页
2024届江苏省苏州市苏州地区学校八年级数学第二学期期末调研试题含解析_第4页
2024届江苏省苏州市苏州地区学校八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏州市苏州地区学校八年级数学第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,菱形中,交于点,于点,连接,若,则的度数是()A.35° B.30° C.25° D.20°2.如图,矩形ABCD中,∠AOB=60°,AB=3,则BD的长是()A. B.5 C. D.63.如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为()A.2 B.4 C.5 D.5或24.下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于点C.随的增大而减小 D.与轴交于点5.在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB6.若函数y=2x+3与y=3x-2b的图象交x轴于同一点,则b的值为()A.-3 B.- C.9 D.-7.与-3A.6 B.-9 C.12 D.8.如图,对折矩形纸片,使与重合,得到折痕,将纸片展平后再一次折叠,使点落到上的点处,则的度数是()A.25° B.30° C.45° D.60°9.函数中自变量的取值范围是()A. B. C. D.全体实数10.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.12.如图,在己知的中,按以一下步骤作图:①分别以为圆心,大于的长为半径作弧,相交于两点;②作直线交于点,连接.若,,则的度数为___________.13.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是___.14.如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________

.15.已知,则________16.若,则_____.17.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.18.如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于_________度.三、解答题(共66分)19.(10分)甲乙两车沿直路同向匀速行驶,甲、乙两车在行驶过程中离乙车出发地的路程与出发的时间的函数关系加图1所示,两车之间的距离与出发的时间的函数关系如图2所示.(1)图2中__________,__________;(2)请用待定系数法求、关于的函数解析式;(不用写自变量取值范围)(3)出发多长时间,两车相距?20.(6分)计算:(1);(2)(﹣3)×.21.(6分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.22.(8分)李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?23.(8分)已知关于的一元二次方程,(1)求证:无论m为何值,方程总有两个不相等的实数根;(2)当m为何值时,该方程两个根的倒数之和等于1.24.(8分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.(1)先作出,再将向下平移5个单位长度后得到,请画出,;(2)将绕原点逆时针旋转90°后得得到,请画出;(3)判断以,,为顶点的三角形的形状.(无需说明理由)25.(10分)已知关于x的方程x2-6x+m2-3m-5=0一个根是-1,求方程的另一个根和m的值.26.(10分)求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:根据题意先画出图形,并写出已知、求证,再证明).

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据直角三角形的斜边中线性质可得,根据菱形性质可得,从而得到度数,再依据即可.【题目详解】解:∵四边形是菱形,,∵O为BD中点,.,∴在中,,..故选:.【题目点拨】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.2、D【解题分析】

先根据矩形的性质可得,再根据等边三角形的判定与性质可得,由此即可得出答案.【题目详解】四边形ABCD是矩形是等边三角形故选:D.【题目点拨】本题考查了矩形的性质、等边三角形的判定与性质,熟记矩形的性质是解题关键.3、D【解题分析】

该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【题目详解】解:设另一个数为x,则5+5+x=4×3,解得x=1,即b=5或1.故选D.【题目点拨】本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、D【解题分析】

直接根据一次函数的性质即可解答【题目详解】A.直线y=2x−5经过第一、三、四象限,错误;B.直线y=2x−5与x轴交于(,0),错误;C.直线y=2x−5,y随x的增大而增大,错误;D.直线y=2x−5与y轴交于(0,−5),正确故选:D.【题目点拨】此题考查一次函数的性质,解题关键在于掌握其性质5、C【解题分析】

根据平行四边形的判定方法逐一进行分析判断即可.【题目详解】A.AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;B.AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;C.AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;D.OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,故选C.【题目点拨】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.6、D【解题分析】

本题可先求函数y=2x+3与x轴的交点,再把交点坐标代入函数y=3x-2b,即可求得b的值.【题目详解】解:在函数y=2x+3中,当y=0时,x=﹣,即交点(﹣,0),把交点(﹣,0)代入函数y=3x﹣2b,求得:b=﹣.故选D.【题目点拨】错因分析

容易题.失分原因是对两个一次函数图象的交点问题没有掌握.7、C【解题分析】

先对各个选项中的二次根式化简为最简二次根式(被开方数中不含分母且被开方数中不含有开得尽方的因数或因式),再在其中找-3的同类二次根式(化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式.)【题目详解】A.6为最简二次根式,且与-3B.-9=-3,与-C.12=23,与D.-15为最简二次根式,且与-3故选C.【题目点拨】本题考查二次根式的加减,能将各个选项中根式化简为最简二次根式,并能找对同类二次根式是本题的关键.8、B【解题分析】

由折叠的性质可得AM=DM=AD,AD⊥MN,AD=AF,可得AF=2AM,由含30度直角三角形性质可得∠MFA=30°,即可求解.【题目详解】解:∵对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,∴AM=DM=AD,AD⊥MN,∴MN∥AB由折叠的性质可得:AD=AF,∴AF=2AM在直角三角形AFM中,有∴∠MFA=30°∵MN∥AB∴∠FAB=∠MFA=30°,故选择:B.【题目点拨】本题考查了翻折变换,含30度直角三角形的性质,平行线的性质,证明AF=2AM是本题的关键.9、A【解题分析】

根据被开方数非负得到不等式x-2≥0,求解即可得到答案.【题目详解】由二次根式有意义的条件,得x-2≥0,即x≥2,故选A.【题目点拨】此题考查函数自变量的取值范围,解题关键在于掌握运算法则.10、D【解题分析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【题目详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【题目点拨】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、x>1;【解题分析】

观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.【题目详解】∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,∴不等式ax>kx+b的解集为x>1,故答案为x>1.【题目点拨】本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.12、105°【解题分析】

根据垂直平分线的性质,可知,BD=CD,进而,求得∠BCD的度数,由,,可知,∠ACD=80°,即可得到结果.【题目详解】根据尺规作图,可知,MN是线段BC的中垂线,∴BD=CD,∴∠B=∠BCD,又∵,∴∠A=∠ADC=50°,∵∠B+∠BCD=∠ADC=50°,∴∠BCD==25°,∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,∴=∠BCD+∠ACD=25°+80°=105°.【题目点拨】本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.13、1【解题分析】

通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【题目详解】如图,根据题意,AD=AC=6,,,,,即,,,这个风车的外围周长是,故答案为1.【题目点拨】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.14、1【解题分析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,

∴v快=v慢.

设两车相遇的时间为t,

根据函数图象可知:t•v慢=(t-2)•v快=276,

解得:t=6,v慢=46,

∴s=18v慢=18×46=1.

故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.15、【解题分析】∵,∴8b=3(3a-b),即9a=11b,∴,故答案为.16、【解题分析】分析:由题干可得b=,然后将其代入所求的分式解答即可.详解:∵的两内项是b、1,两外项是a、2,∴b=,∴=.故本题的答案:.点睛:比例的性质.17、-1【解题分析】

根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.【题目详解】解∵正比例函数y=mx的图象经过点A(m,4),∴4=m1.∴m=±1∵y的值随x值的增大而减小∴m=﹣1故答案为﹣1【题目点拨】本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.18、1【解题分析】

过点D作DE∥AB,交BC于点E.根据等腰梯形的性质可得到△CDE是等腰三角形,根据三线合一性质即得到CF=DF,从而可求得其较小底角的度数.【题目详解】解:如图,DF是等腰梯形ABCD的高,过点D作DE∥AB,交BC于点E.∵AD//BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=DE,∴CD=DE,∵DF⊥BC,∴EF=CF,∵BC-AD=2DF,∴CF=DF,∴△CDF是等腰直角三角形,∴∠C=1°.故答案为:1.【题目点拨】此题考查等腰梯形的性质、梯形中常见的辅助线的作法、平行四边形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题(共66分)19、(1)100,500;(2)、;(3)出发,两车相距.【解题分析】

(1)结合图1和图2即可知道,两车开始距离为b=500,两车相遇时间为a=100(2)利用待定系数法即可求出、关于的函数解析式,将点(500,0)和点(100,2500)代入的解析式,将点(100,2500)代入的解析式,解方程即可【题目详解】解:(1)100,500(2)设,,由题意得,,.解得,.∴、关于的函数解析式分别为、.(3)由题意可知,.∵.解得,出发,两车相距.【题目点拨】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键.20、(1);(2)3【解题分析】

(1)异分母分式相加减,先通分变为同分母分式,然后再加减.(2)利用二次根式的乘法法则运算;【题目详解】(1)解:原式==,=;(2)解:原式==3.【题目点拨】考查了二次根式的运算,解题关键是熟记其运算顺序.21、(1)S甲=-180t+600,S乙=120t;(2)A、B两城之间的距离是600千米,t为2时两车相遇;(1)当两车相距100千米时,t的值是1或1.【解题分析】

(1)根据函数图象可以分别求得S甲、S乙与t的函数关系式;(2)将t=0代入S甲=-180t+600,即可求得A、B两城之间的距离,然后将(1)中的两个函数相等,即可求得t为何值时两车相遇;(1)根据题意可以列出相应的方程,从而可以求得t的值.【题目详解】(1)设S甲与t的函数关系式是S甲=kt+b,,得,即S甲与t的函数关系式是S甲=-180t+600,设S乙与t的函数关系式是S乙=at,则120=a×1,得a=120,即S乙与t的函数关系式是S乙=120t;(2)将t=0代入S甲=-180t+600,得S甲=-180×0+600,得S甲=600,令-180t+600=120t,解得,t=2,即A、B两城之间的距离是600千米,t为2时两车相遇;(1)由题意可得,|-180t+600-120t|=100,解得,t1=1,t1=1,即当两车相距100千米时,t的值是1或1.【题目点拨】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.22、(1)200个;(2)至少是22元【解题分析】

(1)设李大伯第一次购进的小玩具有x个,则第二次购进的小玩具有2x个,根据单价=总价÷数量结合第二次购进的单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设每个小玩具售价是y元,根据利润=销售收入-成本结合总利润率不低于20%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【题目详解】解:(1)设李大伯第一次购进的小玩具有x个,由题意得:,解这个方程,得.经检验,是所列方程的根.答:李大伯第一次购进的小玩具有200个.(2)设每个小玩具售价为元,由题意得:,解这个不等式,得,答:每个小玩具的售价至少是22元.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(2)见解析(2)【解题分析】

(2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;

(2)利用根与系数的关系列式求得m的值即可.【题目详解】证明:△=(m+2)2-4×2×(m-2)=m2+2.

∵m2≥0,

∴m2+2>0,即△>0,

∴方程总有两个不相等的实数根.

(2)设方程的两根为a、b,

利用根与系数的关系得:a+b=-m-2,ab=m-2

根据题意得:=2,

即:=2

解得:m=-,

∴当m=-时该方程两个根的倒数之和等于2.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.24、(1)见解析;(2)见解析;(3)等腰直角三角形【解题分析】

(1)利用描点法作出△ABC,再利用点平移的坐标特征写出A、B、C的对应点A1、B1、C1,然后描点得到△A1B1C1;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2,C2,从而得△A2B2C2;(3)利用勾股定理和勾股定理的逆定理可证明△OA1B为等腰直角三角形.【题目详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论