![龙岩市五县2024届数学八下期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view12/M05/32/36/wKhkGWXbcrOAXVdcAAIldWH2wf4763.jpg)
![龙岩市五县2024届数学八下期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view12/M05/32/36/wKhkGWXbcrOAXVdcAAIldWH2wf47632.jpg)
![龙岩市五县2024届数学八下期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view12/M05/32/36/wKhkGWXbcrOAXVdcAAIldWH2wf47633.jpg)
![龙岩市五县2024届数学八下期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view12/M05/32/36/wKhkGWXbcrOAXVdcAAIldWH2wf47634.jpg)
![龙岩市五县2024届数学八下期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view12/M05/32/36/wKhkGWXbcrOAXVdcAAIldWH2wf47635.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
龙岩市五县2024届数学八下期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.近几年,手机支付用户规模增长迅速,据统计2015年手机支付用户约为3.58亿人,连续两年增长后,2017年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x,则根据题意可以列出方程为()A. B. C. D.2.下列所给图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3.若二次根式有意义,则x的取值范围是()A. B. C. D.4.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=16,AD⊥BC,垂足为D,∠ACB的平分线交AD于点E,则AE的长为()A. B.4 C. D.65.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.24B.C.D.56.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为()A.65° B.60° C.55° D.45°7.已知a<b,则下列不等式不成立的是()A.a+2<b+2 B.2a<2b C. D.﹣2a>﹣2b8.如图,一次函数y1=k1x+2与反比例函数y2=的图象交点A(m,2)和B(﹣4,﹣1)两点,若y1>y2,则x的取值范围是()A.x<﹣4或0<x<2 B.x>2或﹣4<x<0C.﹣4<x<2 D.x<﹣4或x>29.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. B. C. D.10.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()A. B. C. D.11.在下列条件中,不能确定四边形ABCD为平行四边形的是().A.∠A=∠C,∠B=∠D B.∠A+∠B=180°,∠C+∠D=180°C.∠A+∠B=180°,∠B+∠C=180° D.∠A=∠B=∠C=90°12.《九章算术》中的“折竹抵地”问题:一根竹子高丈(丈尺),折断后竹子顶端落在离竹子底端尺处,折断处离地面的高度是多少?()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的方程-2=会产生增根,则k的值为________14..在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.15.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、4,则原直角三角形纸片的斜边长是.16.因式分解:x2﹣9y2=.17.如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是.18.如果最简二次根式与最简二次根式同类二次根式,则x=_______.三、解答题(共78分)19.(8分)已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,图象经过点(0,-2)?(3)k为何值时,y随x的增大而减小?20.(8分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.(1)求直线BE的解析式;(2)求点D的坐标;21.(8分)(阅读材料)解方程:.解:设,则原方程变为.解得,,.当时,,解得.当时,,解得.所以,原方程的解为,,,.(问题解决)利用上述方法,解方程:.22.(10分)近年来,共享汽车的出现给人们的出行带来了便利,一辆型共享汽车的先期成本为8万元,如图是其运营收入(元)与运营支出(元)关于运营时间(月)的函数图象.其中,一辆型共享汽车的盈利(元)关于运营时间(月)的函数解析式为(1)根据以上信息填空:与的函数关系式为_________________;(2)经测试,当,共享汽车在这个范围内运营相对安全及效益较好,求当,一辆型共享汽车的盈利(元)关于运营时间(月)的函数关系式;(注:一辆共享汽车的盈利=运营收入-运营支出-先期成本)(3)某运营公司有型,型两种共享汽车,请分析一辆型和一辆型汽车哪个盈利高;23.(10分)已知△ABC的三边长a、b、c满足|a-4|+(2b-12)2+=0,试判断△ABC的形状,并说明理由.24.(10分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.25.(12分)如图,在等腰△ABC中,∠CAB=90°,P是△ABC内一点,PA=1,PB=3,PC=,将△APB绕点A逆时针旋转后与△AQC重合.求:(1)线段PQ的长;(2)∠APC的度数.26.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
如果设这两年手机支付用户的年平均增长率为,那么2016年手机支付用户约为亿人,2017年手机支付用户约为亿人,而2017年手机支付用户达到约亿人,根据2017年手机支付用户的人数不变,列出方程.【题目详解】设这两年手机支付用户的年平均增长率为,依题意得:.故选:.【题目点拨】本题考查的是由实际问题抽象出一元二次方程-平均增长率问题.解决这类问题所用的等量关系一般是:.2、D【解题分析】
结合中心对称图形和轴对称图形的概念求解即可.【题目详解】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是中心对称图形,又是轴对称图形.故本选项正确;
故选:D.【题目点拨】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【解题分析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.【题目详解】∵二次根式有意义,∴,∴,故选:C.【题目点拨】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.4、C【解题分析】
在Rt△ABD中,利用等腰直角三角形的性质列方程求解可求出AD和BD的长度,在Rt△ADC中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD,同理可得DE的长度,再利用AE=AD−DE即可求出AE的长度.【题目详解】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,即△ABD、△ADC和△CDE为直角三角形,在Rt△ABD中,∵∠ADB=90°,AB=16,∠B=45°,∴∠B=∠BAD=45°,则AD=BD,设AD=BD=x,由勾股定理得:,解得:,即AD=BD=,在Rt△ADC中,∵∠ADC=90°,∠ACD=60°,AD=,∴∠CAD=30°,则,设CD=x,则AC=2x,由勾股定理得:,解得:,即CD,∵CE平分∠ACD,∴∠ECD=30°,在Rt△CDE中,同理得:DE,∴AE=AD﹣DE=﹣=,故选:C.【题目点拨】本题主要考查了勾股定理、等腰直角三角形的性质和直角三角形中30度角所对的直角边是斜边的一半,根据勾股定理构造方程是解题的关键.5、C【解题分析】
连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【题目详解】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【题目点拨】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.6、A【解题分析】
先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。【题目详解】解:根据题意得出MN是线段BC的垂直平分线,∵CD=BD,∴∠B=∠BCD=30°.∵∠B=30°,∠A=55°,∴∠ACB=180°-∠A-∠B=95°,∴∠ACD=∠ACB-∠BCD=65°,故选:A.【题目点拨】本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.7、C【解题分析】
根据不等式的基本性质对各选项进行逐一分析即可.【题目详解】A、将a<b两边都加上2可得a+2<b+2,此不等式成立;B、将a<b两边都乘以2可得2a<2b,此不等式成立;C、将a<b两边都除以2可得,此选项不等式不成立;D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;故选C.【题目点拨】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.8、B【解题分析】
先把B点坐标代入y1=求出k1的值得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后写出一次函数图象在反比例函数图象上方所对应的自变量的范围.【题目详解】解:把B(﹣4,﹣1)代入y1=得k1=﹣4×(﹣1)=4,所以反比例函数解析式为y1=,把A(m,1)代入y1=得1m=4,解得m=1,所以A(1,1),当﹣4<x<0或x>1时,y1>y1.故选:B.【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.9、D【解题分析】
根据等边三角形的性质和平移的性质即可得到结论.【题目详解】解:∵△OAB是等边三角形,∵B的坐标为(2,0),∴A(1,),∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(4,),故选:D.【题目点拨】本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.10、A【解题分析】
根据题意可分析出当t=2时,l经过点A,从而求出OA的长,l经过点C时,t=12,从而可求出a,由a的值可求出AD的长,再根据等腰直角三角形的性质可求出BD的长,即b的值.【题目详解】解:连接BD,如图所示:直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴在等腰Rt△ABD中,BD=,即当a=7时,b=.故选A.【题目点拨】一次函数与勾股定理在实际生活中的应用是本题的考点,根据题意求出AD的长是解题的关键.11、B【解题分析】
根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.【题目详解】A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B选项错误.C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;故选B.12、A【解题分析】
根据题意画出图形,设折断处离地面的高度为x,则AB=10-x,AC=x,BC=6,进而根据勾股定理建立方程求解即可.【题目详解】根据题意可得如下图形:设折断处A离地面的高度为x,则AB=10-x,AC=x,BC=6,∴,解得:,故选:A.【题目点拨】本题主要考查了勾股定理的运用,熟练掌握相关公式是解题关键.二、填空题(每题4分,共24分)13、【解题分析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.【题目详解】∵关于x的方程-2=会产生增根,∴x-3=0,∴x=3.把-2=的两边都乘以x-3得,x-2(x-3)=-k,把x=3代入,得3=-k,∴k=-3.故答案为:-3.【题目点拨】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14、-4或1【解题分析】分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x-1|=5,解得x=-4或1.故答案为-4或1.15、2或10.【解题分析】试题分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.试题解析:①如图:因为CD=,点D是斜边AB的中点,所以AB=2CD=2,②如图:因为CE=点E是斜边AB的中点,所以AB=2CE=10,综上所述,原直角三角形纸片的斜边长是2或10.考点:1.勾股定理;2.直角三角形斜边上的中线;3.直角梯形.16、.【解题分析】因为,所以直接应用平方差公式即可:.17、6cm.【解题分析】试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.故答案为6cm.考点:相似三角形的判定与性质.18、1【解题分析】
∵最简二次根式与最简二次根式是同类二次根式,∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.三、解答题(共78分)19、(1)k=-3;(2)k=±;(3)k>3【解题分析】
(1)将x=0,y=0代入解析式,即可确定k的值;(2)将x=0,y=-2代入解析式,即可确定k的值;(3)根据一次函数的性质,即3-k<0满足题意,解不等式即可.【题目详解】解(1)由题意得:-2k2+18=0解得:k=±3又∵3-k≠0∴k≠3∴k=-3即当k=-3时,函数图象经过原点(2)由题意得:-2=(3-k)·0-2k2+18=0解得:k=±(3)由题意得:3-k<0解得:k>3即当k>3时,y随x的增大而减小【题目点拨】本题考查了一次函数图象上点的坐标特征及函数性质,是基础题型,要熟练掌握此类题目的解法.20、(1)直线BE的解析式为y=x+2;(2)D(-3,).【解题分析】
(1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;(2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.【题目详解】(1),令x=0,则y=2,令y=0,则,解得:x=-6,∴A(-6,0),B(0,2),∴OA=6,OB=2,∴AB==4,∵折叠,∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,∴∠ADE=90°,AD=AB-BD=2,设DE=EO=m,则AE=AO-OE=6-m,在Rt△ADE中,AE2=AD2+DE2,即(6-m)2=m2+(2)2,解得:m=2,∴OE=2,∴E(-2,0),设直线BE的解析式为:y=kx+b,把B、E坐标分别代入得:,解得:,∴直线BE的解析式为y=x+2;(2)过点D作DM⊥AO,垂足为M,由(1)DE=2,AE=AO-OE=4,∵S△ADE=,即,∴DM=,∴点D的纵坐标为,把y=代入,得,解得:x=-3,∴D(-3,).【题目点拨】本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.21、,,,【解题分析】
先变形,再仿照阅读材料换元,求出m的值,再代入求出x即可.【题目详解】解:原方程变为.设,则原方程变为.解得,,.当时,,解得当时,,解得或3.所以,原方程的解为,,,.【题目点拨】本题考查解一元二次方程和解高次方程,能够正确换元是解此题的关键.22、(1);(2);(3)见解析.【解题分析】
(1)设w1=kx,将(10,40000)代入即可得到k的值;(2)根据盈利=运营收入-运营支出-先期成本得出关系式;(3)分三种情况分析讨论.【题目详解】(1)设w1=kx,将(10,40000)代入可得:40000=10k,解得k=4000,所以;(2)∵,∴,(3)若,则,解得;若,则,解得;若,则,解得,∴当时,一辆型汽车盈利高;当时,一辆型和一辆型车,盈利一样高;当时,一辆型汽车盈利高;【题目点拨】考查了一次函数的应用和一元一次不等式的应用,解题关键是理解题意得出数量关系,第(3)问要分情况进行讨论.23、△ABC为直角三角形,理由见解析.【解题分析】
根据绝对值、平方、二次根式的非负性即可列出式子求出a,b,c的值,再根据勾股定理即可判断.【题目详解】△ABC为直角三角形,理由,由题意得a-4=0.2b-12=0,10-c=0,所以a=8、b=6,c=10.所以a2+b2=c2,△ABC为直角三角形.【题目点拨】此题主要考查勾股定理的应用,解题的关键是根据非负性求出各边的长.24、(1),;(2)结论仍然成立,理由:略;(3)【解题分析】
(1)连接AC,根据菱形的性质和等边三角形的性质得出△BAP≌△CAE,再延长交于,根据全等三角形的性质即可得出;
(2)结论仍然成立.证明方法同(1);
(3)根据(2)可知△BAP≌△CAE,根据勾股定理分别求出AP和EC的长,即可解决问题;【题目详解】(1)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人短期借款法律合同范本2025
- 万亩良田联产承包合同新政策
- 个人厂房租赁合同典范
- 产权清楚车位买卖合同细则
- 上海市房地产委托代理合同范本
- 食品调料采购合同
- 个人贷款借款合同模板
- 劳动合同管理制度7
- 个人借款合同书及还款细则
- 个人住宅购房合同条款及样本
- 充血性心力衰竭课件
- 2025年日历(日程安排-可直接打印)
- 《VAVE价值工程》课件
- 分享二手房中介公司的薪酬奖励制度
- 安徽省2022年中考道德与法治真题试卷(含答案)
- GB 4793-2024测量、控制和实验室用电气设备安全技术规范
- 重大火灾隐患判定方法
- 挖掘机售后保养及维修服务协议(2024版)
- 2024年电工(高级技师)考前必刷必练题库500题(含真题、必会题)
- 公司组织架构与管理体系制度
- 2024-2030年中国涂碳箔行业现状调查与投资策略分析研究报告
评论
0/150
提交评论