版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省平凉市泾川县八年级数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一次函数y=-3x+2的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限2.下列各点中,在函数y=2x-5图象上的点是()A.(0,0) B.(,-4) C.(3,-1) D.(-5,0)3.下列函数中,y总随x的增大而减小的是()A.y=4x B.y=﹣4x C.y=x﹣4 D.y=x24.下列有理式中,是分式的为()A. B. C. D.5.下列式子从左到右的变形一定正确的是()A. B. C. D.6.数据1、2、5、3、5、3、3的中位数是()A.1 B.2 C.3 D.57.如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2 C.3 D.48.“单词的记忆效率“是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中小华,小红小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是()A.小华 B.小红 C.小刚 D.小强9.在平面直角坐标系中,点)平移后能与原来的位置关于轴对称,则应把点()A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位10.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B. C.6 D.11.不等式组的解集是A.x≥8 B.x>2 C.0<x<2 D.2<x≤812.已知点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是()A.a>1 B.a<﹣1C.﹣1<a<1 D.﹣1<a<0或0<a<1二、填空题(每题4分,共24分)13.因式分解:2x2-1814.2x-3>-5的解集是_________.15.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为_____.16.如图,在中,,,,,分别为,,的中点,,则的长度为__.17.化简______.18.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.三、解答题(共78分)19.(8分)某校八年级的体育老师为了解本年级学生对球类运动的爱好情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图所示的两幅不完整的统计图[说明:每位学生只选一种自己最喜欢的一种球类)请根据这两幅图形解答下列问题:(1)此次被调查的学生总人数为人.(2)将条形统计图补充完整,并求出乒乓球在扇形中所占的圆心角的度数;(3)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共有多少人?20.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.21.(8分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.22.(10分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.图1图2图323.(10分)先化简,再求值(1)已知,求的值.(2)当时,求的值.24.(10分)(问题情境)如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.25.(12分)某公司计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的14,且不高于B种的13.已知A、B两种计算器的单价分别是150元/个、100元/个,设购买A种计算器(1)求计划购买这两种计算器所需费用y(元)与x的函数关系式;(2)问该公司按计划购买者两种计算器有多少种方案?(3)由于市场行情波动,实际购买时,A种计算器单价下调了3m(m>0)元/个,同时B种计算器单价上调了2m元/个,此时购买这两种计算器所需最少费用为12150元,求m的值.26.如图,已知▱ABCD的对角线AC、BD相交于点O,其周长为16,且△AOB的周长比△BOC的周长小2,求AB、BC的长.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
根据一次函数的图像与性质,结合k=-3<0,b=2>0求解即可.【题目详解】∵k=-3<0,b=2>0,∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.故选B.【题目点拨】题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.2、B【解题分析】
只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【题目详解】解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;
B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;
C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;
D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.
故选:B.【题目点拨】本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.3、B【解题分析】
结合各个选项中的函数解析式,根据相关函数的性质即可得到答案.【题目详解】y=4x中y随x的增大而增大,故选项A不符题意,y=﹣4x中y随x的增大而减小,故选项B符合题意,y=x﹣4中y随x的增大而增大,故选项C不符题意,y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,故选B.【题目点拨】本题考查了二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.4、D【解题分析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D【题目点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.5、D【解题分析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.【题目详解】A.无法进行运算,故A项错误.B.当c=0时无法进行运算,故B项错误.C.无法进行运算,故C项错误.D.,故D项正确.故答案为:D【题目点拨】本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.6、C【解题分析】试题分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为1,2,1,1,1,5,5,∴中位数是按从小到大排列后第4个数为:1.故选C.7、D【解题分析】
由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,
则可判断各命题是否正确.【题目详解】∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°
∵△AEF是等边三角形
∴AE=AF=EF,∠EAF=∠AEF=60°
∵AD=AB,AF=AE
∴△ABF≌△ADE
∴BF=DE
∴BC-BF=CD-DE
∴CE=CF
故①正确
∵CE=CF,∠C=90°
∴EF=CE,∠CEF=45°
∴AF=CE,
∵∠AED=180°-∠CEF-∠AEF
∴∠AED=75°
故②③正确
∵AE=AF,CE=CF
∴AC垂直平分EF
故④正确
故选D.【题目点拨】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.8、C【解题分析】
根据小华,小红,小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况的图表,回答问题即可.【题目详解】解:由图可得:小华同学的单词的记忆效率最高,但复习个数最少,小强同学的复习个数最多,但记忆效率最低,小红和小刚两位同学的记忆效率基本相同,但是小刚同学复习个数较多,所以这四位同学在这次单词复习中正确默写出的单词个数最多的是小刚.故选:C.【题目点拨】本题考查函数的图象,正确理解题目的意思是解题的关键.9、C【解题分析】
先求出点A关于y轴的对称点,即可知道平移的规律.【题目详解】∵点关于y轴的对称点为(2,3)∴应把点向右平移个单位,故选C.【题目点拨】此题主要考查直角坐标系的坐标变换,解题的关键是熟知找到点A关于y轴的对称点.10、D【解题分析】
利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【题目详解】绕点顺时针旋转到的位置.四边形的面积等于正方形的面积等于20,,,中,故选:.【题目点拨】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.11、D【解题分析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.故选D.12、C【解题分析】试题解析:∵在反比例函数y=中,k>0,∴在同一象限内y随x的增大而减小,∵a-1<a+1,y1<y2∴这两个点不会在同一象限,∴a-1<0<a+1,解得-1<a<1故选C.【题目点拨】本题考察了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k>0,在每一象限内y随x的增大而减小;当k<0,在每一象限内y随x的增大而增大.二、填空题(每题4分,共24分)13、2(x+3)(x﹣3).【解题分析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.14、x>-1.【解题分析】
先移项,再合并同类项,化系数为1即可.【题目详解】移项得,2x>-5+3,合并同类项得,2x>-2,化系数为1得,x>-1.故答案为:x>-1.【题目点拨】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.15、【解题分析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【题目详解】解:可设新直线解析式为y=-x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为y=﹣x+.【题目点拨】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.16、6【解题分析】
因为在中,∴AB=2BC又D为AB中点,∴CD=AD=BD=BC=AB又E,F分别为AC,AD的中点,∴EF=CD,所以CD=2EF=6故BC为6【题目点拨】本题主要考查三角形的基本概念和直角三角形。17、.【解题分析】
约去分子与分母的公因式即可.【题目详解】.故答案为:.【题目点拨】本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.18、50【解题分析】
根据频数与频率的数量关系即可求出答案.【题目详解】解:设被调查的学生人数为x,
∴,
∴x=50,经检验x=50是原方程的解,
故答案为:50【题目点拨】本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.三、解答题(共78分)19、(1)200;(2)补全条形统计图见解析;乒乓球在扇形中所占的圆心角的度数为108°;(3)爱好足球和排球的学生共计228人.【解题分析】
(1)读图可知喜欢足球的有40人,占20%,求出总人数;(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;(3)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.【题目详解】解:(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人)故答案为:200;(2)∵喜欢乒乓球人数为60人,∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,∴喜欢排球的人数为:200×10%=20(人),∴喜欢篮球的人数为200×40%=80(人),由以上信息补全条形统计图得:乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;(3)爱好足球和排球的学生共计:760×(20%+10%)=228(人).【题目点拨】本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)∠B=30°;(2)详见解析.【解题分析】
(1)根据余角的性质得到∠ECF=∠CAF,求得∠CAD=2∠DCB,由CD是斜边AB上的中线,得到CD=BD,推出∠CAB=2∠B,于是得到结论;(2)根据直角三角形的性质即可得到结论.【题目详解】解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.【题目点拨】本题主要考查了直角三角形的性质,解题的关键是灵活运用直角三角形的性质进行边角关系的推导.21、(1);(2);(3)或或.【解题分析】
(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【题目详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或【题目点拨】此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.22、(1)证明见解析;(2)证明见解析;(3)AE与MN的数量关系是:AE=MN,BF与FG的数量关系是:BF=FG【解题分析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=AE,FG=AE,则BF=GF;(3)①AE=MN,证明△AEB≌△NMQ;②BF=FG,同理得出BF和FG分别是直角△AEB和直角△AGF斜边上的中线,则BF=AE,FG=AE,所以BF=FG.证明:(1)在图1中,过点D作PD∥MN交AB于P,则∠APD=∠AMN∵正方形ABCD∴AB=AD,AB∥DC,∠DAB=∠B=90°∴四边形PMND是平行四边形且PD=MN∵∠B=90°∴∠BAE+∠BEA=90°∵MN⊥AE于F,∴∠BAE+∠AMN=90°∴∠BEA=∠AMN=∠APD又∵AB=AD,∠B=∠DAP=90°∴△ABE≌△DAP∴AE=PD=MN(2)在图2中连接AG、EG、CG由正方形的轴对称性△ABG≌△CBG∴AG=CG,∠GAB=∠GCB∵MN⊥AE于F,F为AE中点∴AG=EG∴EG=CG,∠GEC=∠GCE∴∠GAB=∠GEC由图可知∠GEB+∠GEC=180°∴∠GEB+∠GAB=180°又∵四边形ABEG的内角和为360°,∠ABE=90°∴∠AGE=90°在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE∴BF=FG(3)AE与MN的数量关系是:AE=MNBF与FG的数量关系是:BF=FG“点睛”本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质与判定,在有中点和直角三角形的前提下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.23、(1);(2)【解题分析】
(1)先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可;(2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x=代入化简后的式子即可得到答案.【题目详解】(1)解:原式=(2分)===当,原式==(2)解:原式当时,原式【题目点拨】本题考查的是分式的化简求值,分式化简求值时,先化简再把分式中未知数对应的值代入求出分式的值.24、(1)证明见解析;(2)成立.证明见解析;(3)(1)成立;(2)不成立【解题分析】
(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【题目详解】解:(1)证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.∴△ADE≌△NCE(AAS)∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【题目点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版信息咨询服务费合同范本
- 二零二五年度企业雇佣人才知识产权合同3篇
- 2024年环保技术研发转让合同
- 2025版软件开发合同技术需求说明书及交付标准3篇
- 糊化锅的课程设计
- 二零二五年度二手车买卖双方权益保护协议
- 二零二五年地质灾害风险评估勘察分包合同3篇
- 箱形基础设计书课程设计
- 2024年羊毛衫出口进口贸易合同3篇
- 2024年酒店整体出租合同书
- 老年病及老年综合征中医证治概要
- 三年级上册数学说课稿- 2.2 看一看(二)-北师大版
- 超星尔雅学习通《西厢记》赏析(首都师范大学)网课章节测试答案
- 切削液的配方
- 塑料门窗及型材功能结构尺寸
- 2023-2024学年湖南省怀化市小学数学五年级上册期末深度自测试卷
- GB 7101-2022食品安全国家标准饮料
- 超实用的发声训练方法
- 《第六课 从传统到现代课件》高中美术湘美版美术鉴赏
- 英语四六级讲座课件
- Unit 3 On the move Understanding ideas(Running into a better life)课件- 高一上学期英语外研版(2019)必修第二册
评论
0/150
提交评论