2024届北京七中学数学八下期末考试模拟试题含解析_第1页
2024届北京七中学数学八下期末考试模拟试题含解析_第2页
2024届北京七中学数学八下期末考试模拟试题含解析_第3页
2024届北京七中学数学八下期末考试模拟试题含解析_第4页
2024届北京七中学数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京七中学数学八下期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人2.已知:如图,菱形ABCD对角线AC与BD相交于点O,E为BC的中点,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm3.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1C.(x+3)2=19 D.(x﹣3)2=194.如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是(

)A.13

B.

C.60

D.1205.已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A. B. C. D.6.下列是假命题的是()A.平行四边形对边平行 B.矩形的对角线相等C.两组对边分别平行的四边形是平行四边形 D.对角线相等的四边形是矩形7.已知一次函数的图象如图所示,当时,y的取值范围是A.B.C.D.8.已知三条线段的长分别为1.5,2,3,则下列线段中,不能与它们组成比例线段的是()A.l B.2.25 C.4 D.29.下列各式中计算正确的是()A.=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.10.下列命题中,有几个真命题()①同位角相等②直角三角形的两个锐角互余③平行四边形的对角线互相平分且相等④对顶角相等A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,△ABC和△BDE都是等边三角形,A、B、D三点共线.下列结论:①AB=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等边三角形.其中正确的有____________(只填序号).12.如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.13.如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.14.若一个多边形的内角和与外角和之和是1800°,则此多边形是___边形.15.如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.16.如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.17.如图,在菱形ABCD中,过点C作CEBC交对角线BD于点E,若ECD20,则ADB____________.18.最简二次根式与是同类二次根式,则=______.三、解答题(共66分)19.(10分)某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水费(元)与用水量(吨)之间的函数关系.(1)当用水量超过10吨时,求关于的函数解析式(不必写自变量取值范围);(2)按上述分段收费标准小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?20.(6分)星期天小红从家跑步去体育场,在那里锻炼了后又步行到文具店买笔,然后散步回到家。小明离家的距离与所用时间之间的图象如图所示.请你根据图象解答下列问题:(1)体育场距文具店___________;___________;小明在文具店停留___________.(2)请你直接写出线段和线段的解析式.(3)当为何值时,小明距家?21.(6分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.(1)判断△AEF的形状,并说明理由;(2)求折痕EF的长度;(3)如图2,展开纸片,连接CF,则点E到CF的距离是.22.(8分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.(1)求的值及的面积;(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.23.(8分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.24.(8分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).捐款额(元)频数百分比37.5%717.5%ab1025%615%总计100%(1)填空:________,________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在的学生人数.25.(10分)计算:(-)0+(-4)-2-|-|26.(10分)解分式方程:=

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【题目详解】A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,故选D.【题目点拨】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体等知识是解题的关键,另外注意学会分析图表.2、C【解题分析】

根据菱形的性质,各边长都相等,对角线垂直平分,可得点O是AC的中点,证明EO为三角形ABC的中位线,计算可得.【题目详解】解:∵四边形是菱形,∴,,∵为的中点,∴是的中位线,∴,故选:C.【题目点拨】本题考查了菱形的性质,三角形中位线的性质,熟练掌握几何图形的性质是解题关键.3、D【解题分析】

方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【题目详解】方程移项得:,配方得:,即,故选D.4、D【解题分析】

由折叠图形的性质求得∠HEF=90°,则∠HEF=∠EFG=∠FGH=∠GHE=90∘,得到四边形EHFG是矩形,再由折叠的性质得矩形ABCD的面积等于矩形EFGH面积的2倍,根据已知数据即可求出矩形ABCD的面积.【题目详解】如图,根据折叠的性质可得∠AEH=∠MEH,∠BEF=∠FEM,∴∠AEH+∠BEF=∠MEH+∠FEM,∴∠HEF=90°,同理得∠HEF=∠EFG=∠FGH=∠GHE=90∘∴四边形EHFG是矩形,由折叠的性质得:S矩形ABCD=2S矩形HEFG=2×EH×EF=2×5×12=120;故答案为:D.【题目点拨】本题考查矩形的折叠问题,解题关键在于能够得到四边形EHFG是矩形5、D【解题分析】

通过点经过四边形各个顶点,观察图象的对称趋势问题可解.【题目详解】、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.故选:.【题目点拨】本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.6、D【解题分析】

利用平行四边形的判定、矩形的性质及矩形的判定方法分别判断后即可确定正确的选项.【题目详解】解:A、平行四边形的两组对边分别平行,正确,是真命题;

B、矩形的对角线相等,正确,是真命题;

C、两组对边分别平行的四边形是平行四边形,正确,是真命题;

D、对角线相等的平行四边形是矩形,故错误,是假命题,

故选:D.【题目点拨】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、矩形的性质及矩形的判定方法,难度不大.7、D【解题分析】

观察图象得到直线与x轴的交点坐标为(2,1),且图象经过第一、三象限,y随x的增大而增大,所以当x<2时,y<1.【题目详解】解:∵一次函数y=kx+b与x轴的交点坐标为(2,1),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<1.故选:D.【题目点拨】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小.8、D【解题分析】

对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如

ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.据此求解可得.【题目详解】解:A.由1×3=1.5×2知1与1.5,2,3组成比例线段,此选项不符合题意;B.由1.5×3=2.25×2知2.25与1.5,2,3组成比例线段,此选项不符合题意;C.由1.5×4=3×2知4与1.5,2,3组成比例线段,此选项不符合题意;D.由1.5×3≠2×2知2与1.5,2,3不能组成比例线段,此选项符合题意;故选:D【题目点拨】本题主要考查了成比例线段的关系,判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.9、D【解题分析】

根据二次根式的意义、性质逐一判断即可得.【题目详解】A.、没有意义,此选项错误;B.a(a>0),此选项错误;C.5,此选项错误;D.,此选项正确.故选D.【题目点拨】本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质.10、B【解题分析】

解:①只有在两直线平行的前提下,同位角才相等,错误;②直角三角形的两个锐角互余,正确;③平行四边形的对角线互相平分,不一定相等,错误;④对顶角相等,正确故选B二、填空题(每小题3分,共24分)11、②③④⑤【解题分析】

由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.【题目详解】∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴在△BGD和△BFE中,,∴△BGD≌△BFE(ASA),∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,在△ABF和△CGB中,,∴△ABF≌△CGB(SAS),∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∴②③④⑤都正确.故答案为②③④⑤.【题目点拨】本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.12、.【解题分析】

根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.【题目详解】解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.【题目点拨】本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.13、4或或【解题分析】

分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;(2)利用勾股定理求出AE边上的高BF即可;(3)求出AE边上的高DF即可【题目详解】解:分三种情况:(1)当AE=AF=4时,如图1所示:△AEF的腰AE上的高为AF=4;(2)当AE=EF=4时,如图2所示:则BE=5-4=1,BF=;(3)当AE=EF=4时,如图3所示:则DE=7-4=3,DF=,故答案为4或或.【题目点拨】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.14、十【解题分析】

试题分析:设所求n边形边数为n,先根据多边形的外角和为360度得到多边形的内角和,再根据多边形的内角和公式,即可得到结果.由题意得多边形的内角和为1800°-360°=1440°,设所求n边形边数为n,则180°(n-2)=1440°,解得n=10,则此多边形是十边形.考点:本题考查的是多边形的内角和公式,多边形的外角和点评:解答本题的关键是熟练掌握多边形的内角和公式:180°(n-2),任意多边形的外角和均是360度,与边数无关.15、【解题分析】

根据一元一次方程无解,则m+1=0,即可解答.【题目详解】解:∵关于的方程无解,∴m+1=0,∴m=−1,故答案为m=−1.【题目点拨】本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.16、1【解题分析】

根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【题目详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【题目点拨】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.17、35°【解题分析】

由已知条件可知:∠BCD=110°,根据菱形的性质即可求出ADB的度数.【题目详解】∵CEBC,ECD20,∴∠BCD=110°,∵四边形ABCD是菱形,∴∠BCD+∠ADC=180°,∠ADB=,∴∠ADC=70°,∴∠ADB==35°,【题目点拨】本题考查了菱形的性质,牢记菱形的性质是解题的关键.18、4【解题分析】

由于与是最简二次根式,故只需根式中的代数式相等即可确定的值.【题目详解】由最简二次根式与是同类二次根式,可得3a-1=11解得a=4故答案为:4.【题目点拨】本题主要考察的是同类二次根式的定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.三、解答题(共66分)19、(1);(2)四月份比三月份节约用水3吨.【解题分析】

(1)根据函数图象和函数图象中的数据可以求得当用水量超过10吨时,y关于x的函数解析式;

(2)根据题意和函数图象可以分别求得三月份和四月份的用水量,从而可以解答本题.【题目详解】解:(1)设关于的解析式为,把,;,,代入中得,解得,关于的解析式为.(2)四月份水费27元小于30元,所以4月份用水量为:(吨)三月份水费为38元超过30元把代入中,得,(吨)所以四月份比三月份节约用水3吨.【题目点拨】考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用函数的思想解答.20、(1)1,30,20;(2)线段OA对应的函数解析式为y=x(0≤x≤15),线段DE对应的函数解析式为y=−x+4.75(65≤x≤95);(3)当x为7.2或71时,小明距家1.2km.【解题分析】

(1)根据题意和函数图象中的数据可以解答本题;(2)根据函数图象中的数据可以求得线段OA和线段DE的解析式;(3)根据(2)中的函数解析式可以求得当x为何值时,小明距家1.2km.【题目详解】解:(1)由图象可得,体育场距文具店:2.5-1.5=1(km),m=15+15=30,小明在文具店停留:65-45=20(min),故答案为:1,30,20;(2)设线段OA对应的函数解析式为y=kx,由15k=2.5,得k=,即线段OA对应的函数解析式为y=x(0≤x≤15),设线段DE对应的函数解析式为y=ax+b,由题意得,得,即线段DE对应的函数解析式为y=−x+4.75(65≤x≤95);(3)将y=1.2代入y=x,得

1.2=x,解得,x=7.2,将y=1.2代入y=−x+4.75,得1.2=−x+4.75,解得,x=71,答:当x为7.2或71时,小明距家1.2km.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21、(1)△DEF是等腰三角形,理由见解析;(2);(3)1【解题分析】

(1)根据折叠和平行的性质,可得∠AEF=∠AFE,即得出结论;(2)过点E作EM⊥AD于点M,得出四边形ABEM是矩形,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,利用勾股定理求出x,在Rt△EMF中,用勾股定理即可求得;(3)证明四边形AECF是菱形,设点E到CF的距离为h,通过面积相等,即可求得.【题目详解】(1)△AEF是等腰三角形.理由如下:由折叠性质得∠AEF=∠FEC,在矩形ABCD中,AD∥BC,∴∠AFE=∠FEC,∴∠AEF=∠AFE,∴AF=AE;∴△AEF是等腰三角形;故答案为:△AEF是等腰三角形.(2)如图,过点E作EM⊥AD于点M,则∠AME=90°,又∵在矩形ABCD中,∠BAD=∠B=90°,∴四边形ABEM是矩形,∴AM=BE,ME=AB=1,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,AE2=AB2+BE2,x2=12+(16-x)2,解之得x=10,∴EC=AE=10,BE=6,∴AM=6,AF=AE=10,∴MF=AF-AM=4,在Rt△EMF中,;故答案为:;(3)由(1)知,AE=AF=EC,∵AF∥EC,∴四边形AECF是平行四边形,∴四边形AECF是菱形,设点E到CF的距离为h,,∴h=1.即E到CF的距离为1,故答案为:1.【题目点拨】考查了折叠图形和平行线结合的性质,等腰三角形的判定和性质,勾股定理求角的应用,菱形的判定和性质,等面积法的应用,熟记和掌握几何图形的判定和性质内容是解题的关键.22、(1)K=-,的面积=3;(2)(2,0)或(2-)或C3(-2,0);(3)(4,-3)或(-4,9).【解题分析】

①将代入直线可得K=-,的面积=OB·OA==3.②如详解图,分类讨论c1,c2,求坐标.③如详解图,分类讨论p1,p2,求坐标.【题目详解】(1)将代入直线可得K=-,点B坐标为(3,0),的面积=OB·OA·=2·3·=3.②已知△ABC为等腰三角形,则AB=AC.可求出AB长为,以A为圆心,AB为半径画弧,与x轴交点有2个,易得C点坐标为C1(2,0)或C2(2-).以B为圆心,BA为半径画弧与x轴交点有一个,坐标为C3(-2,0)③设P点坐标为(x,)∵S△BAM=,∴P点在线段AB外.若P在线段BA延长线上时,S△PBM=S△BAM+S△PAM===3,x=4.所以P坐标为(4,-3),若P在线段AB延长线上,S△PBM=S△PAM-S△BAM=﹣若﹣=3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论