




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市长宁区西延安中学八年级数学第二学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.22.方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为()A.3、2、5B.2、3、5C.2、﹣3、﹣5D.﹣2、3、53.等于()A.2 B.0 C. D.-20194.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定5.下列二次根式中,是最简二次根式的为()A. B. C. D.6.分式方程的解是().A.x=-5 B.x=5 C.x=-3 D.x=37.下列由左到右变形,属于因式分解的是A. B.C. D.8.如图,一次函数()的图象经过,两点,则关于的不等式的解集是()A. B. C. D.9.某校举行课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.65m,其方差分别是S甲2=3.8,S乙2=3.4,则参赛学生身高比较整齐的班级是()A.甲班 B.乙班 C.同样整齐 D.无法确定10.小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间(小时)之间的函数关系的大致图象是()A. B. C. D.11.如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A.1 B. C.2 D.12.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为()A.92 B.88 C.90 D.95二、填空题(每题4分,共24分)13.□ABCD中,已知:∠A=38°,则∠B=_____度,∠C=____度,∠D=_____度.14.不等式组的解集是,那么的取值范围是__________.15.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.16.在中,,,,_______.17.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.18.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为_______.三、解答题(共78分)19.(8分)解不等式组:并写出它的所有的整数解.20.(8分)已知关于的方程(1)若请分别用以下方法解这个方程:①配方法;②公式法;(2)若方程有两个实数根,求的取值范围.21.(8分)如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC=30°,AB=1.求CF的长.22.(10分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?23.(10分)如图,在四边形中,,,,,、分别在、上,且,与相交于点,与相交于点.(1)求证:四边形为矩形;(2)判断四边形是什么特殊四边形?并说明理由;(3)求四边形的面积.24.(10分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.(1)通过计算说明边长分别为2,3,的是否为直角三角形;(2)请在所给的网格中画出格点.25.(12分)如图,四边形ABCD和四边形AEFB都是平行四边形,求证:△ADE≌△BCF.26.如图,在中,为边的中点,过点作,与的延长线相交于点,为延长上的任一点,联结、.(1)求证:四边形是平行四边形;(2)当为边的中点,且时,求证:四边形为矩形.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=1,
∴PE=1.
故选C.2、C【解题分析】分析:对于一元二次方程ax2+bx+c=0(a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.详解:2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣3、﹣5.故选C.点睛:本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3、C【解题分析】
根据0指数幂和负整数指数幂的运算法则计算即可得答案.【题目详解】=1×=,故选:C.【题目点拨】本题考查0指数幂及负整数指数幂,任何不为0的数的0次幂都等于1,熟练掌握运算法则是解题关键.4、A【解题分析】
因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.【题目详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2,故选A.【题目点拨】本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.5、C【解题分析】试题解析:A、,被开方数含分母,不是最简二次根式;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选C.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6、A【解题分析】
观察可得最简公分母是(x+1)(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【题目详解】方程两边同乘以(x+1)(x-1),
得3(x+1)=2(x-1),
解得x=-5.
经检验:x=-5是原方程的解.
故选A..【题目点拨】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7、A【解题分析】
根据因式分解是把一个整式分解成几个整式乘积的形式由此即可解答.【题目详解】选项A,符合因式分解的定义,本选项正确;选项B,结果不是整式的积的形式,不是因式分解,本选项错误;选项C,结果不是整式的积的形式,不是因式分解,本选项错误;选项D,结果不是整式的积的形式,因而不是因式分解,本选项错误.故选A.【题目点拨】本题主要考查了因式分解的定义,正确理解因式分解的定义是解题关键.8、C【解题分析】
根据图像,找到y>0时,x的取值范围即可.【题目详解】解:由图像可知:该一次函数y随x的增大而增大,当x=-3时,y=0∴当x>-3时,y>0,即∴关于的不等式的解集是故选C.【题目点拨】此题考查的是一次函数与一元一次不等式的关系,掌握一次函数的图象及性质与一元一次不等式的解集的关系是解决此题的关键.9、B【解题分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【题目详解】S甲2=3.8,S乙2=3.4,∴S甲2>S乙2,∴参赛学生身高比较整齐的班级是乙班,故选:B.【题目点拨】此题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解题分析】
根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【题目详解】A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选C.【题目点拨】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.11、C【解题分析】
首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S=,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.【题目详解】解:根据反比例函数得对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,又∴S四边形ABCD=2.故答案选:C.【题目点拨】本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.12、C【解题分析】分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40%+10%=1.详解:由题意得,85×50%+95×40%+95×10%=90(分).点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.二、填空题(每题4分,共24分)13、14238142【解题分析】
根据平行四边形对角相等,邻角互补,进而得出∠B、∠C、∠D的度数.【题目详解】∵平行四边形ABCD中,∴∠B=∠D,∠A=∠C=38°,∠A+∠B=180°,∴∠B=142°,∴∠D=∠B=142°.故答案为:142,38,142【题目点拨】本题考查了平行四边形的性质,掌握平行四边形对角相等,邻角互补是解题的关键.14、m≤4【解题分析】试题解析:由①得:x>4.当x>m时的解集是x>4,根据同大取大,所以故答案为15、1【解题分析】
先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【题目详解】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为1分,因此a=b=c=d=e=1,即C得1分.故答案是:1.【题目点拨】利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.16、1【解题分析】
根据10°所对的直角边等于斜边的一半求解.【题目详解】解:∵∠C=90°,∠A=10°,BC=,∴AB=2BC=1.故答案为:1.【题目点拨】本题考查含10°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.17、1【解题分析】
直接把x=−1代入一元二次方程ax2−bx−1=0中即可得到a+b的值.【题目详解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得a+b﹣1=0,所以a+b=1.故答案为1【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、48【解题分析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.三、解答题(共78分)19、1、2、2【解题分析】
解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.【题目详解】解:解不等式①得,x≥1,解不等式②得,x<1,∴不等式组的解集是1≤x<1.∴不等式组的所有整数解是1、2、2.【题目点拨】解一元一次不等式组,一元一次不等式组的整数解.20、(1)①,见解析;②,见解析;(2)【解题分析】
(1)①利用配方法解方程;
②先计算判别式的值,然后利用求根公式解方程;
(2)利用判别式的意义得到△=(-5)2-4×(3a+3)≥0,然后解关于a的不等式即可.【题目详解】解:当时,原方程为:∴,∴,∴;,∴;方程有两个实数根,;【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解一元二次方程.21、.【解题分析】
首先证明四边形ABDE是平行四边形,可得AB=DE=CD,即D为CE中点,然后再得CE=4,再利用三角函数可求出HF和CH的长即可.【题目详解】四边形ABCD是平行四边形,,,,四边形ABDE是平行四边形,,即D为CE中点,,,,,过E作于点H,,,,,,.【题目点拨】本题考查了平行四边形的判定与性质,以及三角函数的应用,关键是掌握平行四边形对边相等.22、(1)(2)3小时【解题分析】
(1)设,根据题意得,解得(2)当时,∴骑摩托车的速度为(千米/时)∴乙从A地到B地用时为(小时)【题目详解】请在此输入详解!23、(1)见解析;(2)四边形EFPH为矩形,理由见解析;(3)【解题分析】
(1)由平行线的性质证出∠BCD=90°即可;(2)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出∠BEC=90°,根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH//FP,EF//HP,推出平行四边形EFPH,根据矩形的判定推出即可;(3)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.【题目详解】(1)证明:∵AB//CD,∴∠CBA+∠BCD=180°,∵∠CBA=∠ADC=90°,∴∠BCD=90°,∴四边形ABCD是矩形;(2)解:四边形EFPH为矩形;理由如下:∵四边形ABCD是矩形,∴AD=BC=5,AB=CD=2,AD∥BC,由勾股定理得:CE=,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.∵DE=BP,DE//BP,∴四边形DEBP是平行四边形,∴BE//DP,∵AD=BC,AD//BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP//CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:∵四边形AECP是平行四边形,∴PD=BE=2,在Rt△PCD中,FC⊥PD,PC=BC-BP=4,由三角形的面积公式得:PD•CF=PC•CD,∴CF=,∴EF=CE-CF=,∵PF=,∴S矩形EFPH=EF•PF=,即:四边形EFPH的面积是.【题目点拨】本题综合考查了矩形的判定与性质、勾股定理及其逆定理、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 编程语言实战课程企业制定与实施新质生产力战略研究报告
- 天然农药资源保护行业跨境出海战略研究报告
- 社交技巧与高端社交场合应对企业制定与实施新质生产力战略研究报告
- 潮流艺术展览与交易平台行业跨境出海战略研究报告
- 老年教育在线平台企业制定与实施新质生产力战略研究报告
- 纳米稳定剂企业制定与实施新质生产力战略研究报告
- 食品级碳酸钙生产行业深度调研及发展战略咨询报告
- 旅游行业人才培养计划与培训
- 医药行业安全生产知识培训计划2025
- 光伏电站性能评估及审核流程
- 特基拉烈酒(Tequila)课件
- Sigma-Delta-ADC讲稿教学讲解课件
- 高考作文写作备考:“磨砺中提升自我”导写及范文
- 部编版小学二年级语文下册《口语交际图书借阅公约》教学反思(三篇)
- 卵巢癌根治术手术配合
- 义务教育质量监测小学四年级 德育模拟试卷附答案
- 人教版五年级下册语文 第4单元 10.青山处处埋忠骨课前预习课件
- PPT模板 上海外国语大学
- 各阶段的BIM技术应用71页
- 仓库绩效考核制度规定办法
- 重返狼群李微漪和格林
评论
0/150
提交评论