重庆市沙坪坝区2024届数学八年级第二学期期末检测试题含解析_第1页
重庆市沙坪坝区2024届数学八年级第二学期期末检测试题含解析_第2页
重庆市沙坪坝区2024届数学八年级第二学期期末检测试题含解析_第3页
重庆市沙坪坝区2024届数学八年级第二学期期末检测试题含解析_第4页
重庆市沙坪坝区2024届数学八年级第二学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市沙坪坝区2024届数学八年级第二学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为()A.65° B.60° C.55° D.45°2.正六边形的外角和为()A.180° B.360° C.540° D.720°3.已知直线y=(k﹣3)x+k经过第一、二、四象限,则k的取值范围是()A.k≠3 B.k<3 C.0<k<3 D.0≤k≤34.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为A. B.10cm C.20cm D.12cm5.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7 B.5 C.3 D.26.下列多项式中,不能运用公式法进行因式分解的是()A.x2+2xy+y2 B.x2﹣9 C.m2﹣n2 D.a2+b27.如图,下列能判定AB∥CD的条件的个数是()①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠1.A.1个 B.2个 C.3个 D.4个8.如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF交于点H.下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的结论是A.①②③④ B.②③ C.①②④ D.①③④9.如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.10.若关于x的方程x2-bx+6=0的一根是x=2,则另一根是()A.x=-3 B.x=-2 C.x=2 D.x=3二、填空题(每小题3分,共24分)11.已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)12.如图,中,AB的垂直平分线DE分别交AB、BC于E、D,若,则的度数为__________13.若代数式在实数范围内有意义,则的取值范围为____.14.己知关于的分式方程有一个增根,则_____________.15.若,,则=___________.16.如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.17.已知关于X的一元二次方程有实数根,则m的取值范围是____________________18.如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).三、解答题(共66分)19.(10分)如图,在□ABCD中,∠ADB=90°,点E为AB边的中点,点F为CD边的中点.(1)求证:四边形DEBF是菱形;(2)当∠A等于多少度时,四边形DEBF是正方形?并说明你的理由.20.(6分)先化简,再求值.(其中p是满足-3<p<3的整数).21.(6分)解不等式组.22.(8分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.(1)请补全下表:30°45°60°90°120°135°150°S1(2)填空:由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到(______°);(______°),…,由此可以归纳出.(3)两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).23.(8分)如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.(1)求证:四边形ADFC是平行四边形;(2)若∠BDC=90°,求证:CD平分∠ACB;(3)在(2)的条件下,若BD=DC=6,求AB的长.24.(8分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)写出点M的坐标;(2)求直线MN的表达式;(3)若点A的横坐标为-1,求矩形ABOC的面积.25.(10分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天;(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.26.(10分)顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形的两条对角线______,就能使中点四边形是菱形;(2)只要原四边形的两条对角线______,就能使中点四边形是矩形;(3)请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,把它画出来.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。【题目详解】解:根据题意得出MN是线段BC的垂直平分线,∵CD=BD,∴∠B=∠BCD=30°.∵∠B=30°,∠A=55°,∴∠ACB=180°-∠A-∠B=95°,∴∠ACD=∠ACB-∠BCD=65°,故选:A.【题目点拨】本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.2、B【解题分析】

由多边形的外角和等于360°,即可求得六边形的外角和.【题目详解】解:∵多边形的外角和等于360°,

∴六边形的外角和为360°.

故选:B.【题目点拨】此题考查了多边形的内角和与外角和的知识.解题时注意:多边形的外角和等于360度.3、C【解题分析】

根据一次函数的性质列式求解即可.【题目详解】由题意得k-3<0k>0∴0<k<3.故选C.【题目点拨】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.4、B【解题分析】

作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【题目详解】作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,∴AB==10(cm),故选:B.【题目点拨】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.5、B【解题分析】

首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【题目详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.【题目点拨】此题主要考查直角三角形的全等判定,熟练运用即可得解.6、D【解题分析】

各项分解因式,即可作出判断.【题目详解】A、原式=(x+y)2,不符合题意;B、原式=(x+3)(x-3),不符合题意;C、原式=(m+n)(m-n),不符合题意;D、原式不能分解因式,符合题意,故选D.【题目点拨】此题考查了因式分解-运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.7、B【解题分析】

根据平行线的判定定理分别进行判断即可.【题目详解】解:①当∠B+∠BCD=180°,AB∥CD,故正确;②当∠3=∠2时,AB=BC,故错误;③当∠1=∠4时,AD=DC,故错误;④当∠B=∠1时,AB∥CD,故正确.所以正确的有2个故选:B.【题目点拨】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8、C【解题分析】

由正方形的性质和相似三角形的判定与性质,即可得出结论.【题目详解】∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH∙PC,故④正确;故选C.9、A【解题分析】

延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【题目详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.【题目点拨】此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.10、D【解题分析】

把x=2代入方程x2-bx+6=0,求出b,得出方程,再求出方程的解即可.【题目详解】解:把x=2代入方程x2-bx+6=0得:4-2b+6=0,解得:b=5,即方程为x2-5x+6=0,解得:x=2或3,即方程的另一个根是x=3,故选:D.【题目点拨】此题考查解一元二次方程,一元二次方程的解和根与系数的关系,能求出b的值是解题的关键.二、填空题(每小题3分,共24分)11、<【解题分析】试题解析:∵一次函数y=-1x+5中k=-1<0,∴该一次函数y随x的增大而减小,∵x1>x1,∴y1<y1.12、80°.【解题分析】

根据线段的垂直平分线的性质得到DB=DA,得到∠DAB=∠B=40°,根据三角形的外角性质计算即可.【题目详解】解:∵DE是线段AB的垂直平分线,

∴DB=DA,

∴∠DAB=∠B=40°,

∴∠ADC=∠DAB+∠B=80°.

故答案为:80°.【题目点拨】本题考查线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13、且【解题分析】

根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【题目详解】解:根据二次根式有意义,分式有意义得:且≠0,即且.【题目点拨】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14、【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【题目详解】方程两边都乘(x−3),得x−2(x−3)=k+1,∵原方程有增根,∴最简公分母x−3=0,即增根是x=3,把x=3代入整式方程,得k=2.【题目点拨】本题主要考查了分式方程的增根,熟悉掌握步骤是关键.15、【解题分析】

首先根据平方差公式进行变换,然后直接代入,即可得解.【题目详解】解:根据平方差公式,可得=将,,代入,得原式==故答案为.【题目点拨】此题主要考查平方差公式的运用,熟练掌握即可解题.16、(1,2)【解题分析】

根据位似变换的性质,坐标与图形性质计算.【题目详解】点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),

∴以原点O为位似中心,把△OAB缩小12,得到△OA'B',

∵点A的坐标为(2,4),

∴点A'的坐标为(2×12,4×12),即(1,2),

故答案是:(1【题目点拨】考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.17、m≤3且m≠2【解题分析】试题解析:∵一元二次方程有实数根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.18、3080π.【解题分析】

用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.【题目详解】依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面积为3080πmm1.故答案为:3080π.【题目点拨】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.三、解答题(共66分)19、(1)见解析;(2)45°【解题分析】试题分析:(1)根据平行四边形的性质得出DC∥AB,DC=AB,求出DF∥BE,DF=BE,得出四边形DEBF是平行四边形,求出DE=BE,根据菱形的判定得出即可;(2)求出AD=BD,根据等腰三角形的性质得出DE⊥AB,根据正方形的判定得出即可.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∵点E为AB边的中点,点F为CD边的中点,∴DF∥BE,DF=BE,∴四边形DEBF是平行四边形.∵∠ADB=90°,点E为AB边的中点,∴DE=BE=AE,∴四边形DEBF是菱形;(2)当∠A=45°,四边形DEBF是正方形.理由如下:∵∠ADB=90°,∠A=45°,∴∠A=∠ABD=45°,∴AD=BD.∵E为AB的中点,∴DE⊥AB,即∠DEB=90°.∵四边形DEBF是菱形,∴四边形DEBF是正方形.点睛:本题考查了正方形的判定、平行四边形的判定、菱形的判定、平行四边形的性质、直角三角形的性质等知识点,能综合运用性质进行推理是解答此题的关键.20、,-.【解题分析】

本题的关键是正确进行分式的通分、约分,并准确代值计算.在-3<p<3中的整数p是-2,-1,0,1,2;为满足原式有意义,只能取-1.【题目详解】=.在−3<p<3中的整数p是−2,−1,0,1,2;根据题意,这里p仅能取−1,此时原式=-.故答案为:-.【题目点拨】此题考查分式的化简求值,解题关键在于掌握运算法则进行化简.21、【解题分析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.【题目详解】解:由(1)得:由(2)得:,所以,原不等式组的解为:【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.【解题分析】分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;(2)根据表中所计算出的S的值,可得出答案;(3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,则DE=AD=,∴S=AB•DE=,同理当α=60°时S=,当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,则∠DAE=60°,∴DF=AD=,∴S=AB•DF=,同理当α=150°时,可求得S=,故表中依次填写:;;;;(2)由(1)可知S(60°)=S(120°),S(150°)=S(30°),∴S(180°-α)=S(α)故答案为:120;30;α;(3)两个带阴影的三角形面积相等.证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.∵∠AOD=∠COB=90°,∴∠COD+∠AOB=180°,∴S△AOB=S菱形AMBO=S(α)S△CDO=S菱形OCND=S(180°-α)由(2)中结论S(α)=S(180°-α)∴S△AOB=S△CDO.点睛:本题为四边形的综合应用,涉及知识点有菱形的性质和面积、解直角三角形及转化思想等.在(1)中求得菱形的高是解题的关键,在(2)中利用好(1)中的结论即可,在(3)中把三角形的面积转化成菱形的面积是解题的关键.本题考查知识点较基础,难度不大.23、(1)见解析;(2)见解析;(3)310【解题分析】

(1)证明EF是ΔABC的中位线,得出EF//AC,DF//AC,由AD//BC,即可得出四边形ADFC是平行四边形;(2)由直角三角形斜边上的中线性质得出DF=12BC=CF(3)证出ΔBDC为等腰直角三角形,得出BC=2BD=62,由等腰三角形的性质得出DF⊥BC,FC=12BC=32【题目详解】(1)证明:∵点E,F分别是BA,BC边的中点,∴EF是ΔABC的中位线,∴EF//AC,∴DF//AC,又∵AD//BC,∴四边形ADFC是平行四边形;(2)解:∵∠BDC=90°,F是BC边的中点,∴DF=1∴平行四边形ADFC为菱形,∴CD平分∠ACB;(3)解:∵BD=CD=6,∠BDC=90°,∴ΔBDC为等腰直角三角形,∴BC=2∵F是BC边的中点,∴DF⊥BC,FC=1∵四边形ADFC是菱形,∴四边形ADFC为正方形,∴∠ACB=90°,AC=FC=32∴AB=A【题目点拨】本题考查了平行四边形的判定与性质、三角形中位线定理、直角三角形斜边上的中线性质、菱形的判定与性质、正方形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明四边形是菱形是解题的关键.24、(1)(-2,0);(2)该y=3x+6;(3)S矩形ABOC=3.【解题分析】

(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,得出点M的坐标;

(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;

(3)将A点横坐标代入y=3x+6,求出纵坐标,即可表示出S矩形ABOC.【题目详解】(1)∵N(0,6)∴ON=6∵ON=3OM∴OM=2∴M点坐标为(-2,0);(2)该直线MN的表达式为y=kx+b,分别把M(-2,0),N(0,6)代入,得解得∴直线MN的表达式为y=3x+6.(3)在y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论