




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省六安市七校联考数学八下期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.某边形的每个外角都等于与它相邻内角的,则的值为()A.7 B.8 C.10 D.93.菱形的周长等于其高的8倍,则这个菱形的较大内角是()A.30° B.120° C.150° D.135°4.将矩形纸片按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形,若,则的长为()A. B. C. D.5.下列命题中是真命题的是()①4的平方根是2②有两边和一角相等的两个三角形全等③连结任意四边形各边中点的四边形是平行四边形④所有的直角都相等A.0个 B.1个 C.2个 D.3个6.下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是()A. B.C. D.7.顺次连结菱形各边中点所得到四边形一定是()A.平行四边形 B.正方形 C.矩形 D.菱形8.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.9 C.10 D.4+9.如图,在中,,将沿方向平移个单位后得到,连接,则的长为()A. B. C. D.10.从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是()A.﹣4 B.﹣1 C.0 D.111.如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()A.10 B.16 C.18 D.2012.下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为()A. B. C. D.二、填空题(每题4分,共24分)13.约分:=_________.14.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.15.如图,在中,,,是角平分线,是中线,过点作于点,交于点,连接,则线段的长为_____.16.将直线y=2x向上平移3个单位所得的直线解析式是_____.17.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。18.如图,某居民小区要一块一边靠墙的空地上建一个长方形花园,花园的中间用平行于的栅栏隔开,一边靠墙,其余部分用总长为米的栅栏围成且面积刚好等于平方米,求围成花园的宽为多少米?设米,由题意可列方程为______.三、解答题(共78分)19.(8分)如图,在△ABC中,AC=BC,∠C=90°,D是BC上的一点,且BD=CD.(1)尺规作图:过点D作AB的垂线,交AB于点F;(2)连接AD,求证:AD是△ABC的角平分线.20.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.21.(8分)已知一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3).(1)求这个一次函数的关系式;(2)画出这个一次函数的图象.22.(10分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图中的值是.(2)补全图2的统计图.(3)求本次调查获取的样本数据的平均数、众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.23.(10分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:候选人笔试成绩面试成绩甲9088乙8492丙x90丁8886(1)直接写出四名候选人面试成绩中位数;(2)现得知候选人丙的综合成绩为87.2分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.24.(10分)已知:如图,是的角平分线,于点,于点,,求证:是的中垂线.25.(12分)某花卉基地出售文竹和发财树两种盆栽,其单价为:文竹盆栽12元/盆,发财树盆栽15元/盆。如果同一客户所购文竹盆栽的数量大于800盆,那么每盆文竹可降价2元.某花卉销售店向花卉基地采购文竹400盆~900盆,发财树若干盆,此销售店本次用于采购文竹和发财树恰好花去12000元.然后再以文竹15元,发财树20元的单价实卖出.若设采购文竹x盆,发财树y盆,毛利润为W元.(1)当时,y与x的数量关系是_______,W与x的函数解析式是_________;当时,y与x的数量关系是___________,W与x的函数解析式是________;(2)此花卉销售店应如何采购这两种盆栽才能使获得毛利润最大?26.如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF为平行四边形.(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】【分析】根据菱形的性质逐项进行判断即可得答案.【题目详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【题目点拨】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.2、C【解题分析】
设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【题目详解】设内角为x,则相邻的外角为x,由题意得,x+x=180°,解得,x=144°,360°÷36°=10故选:C.【题目点拨】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.3、C【解题分析】
根据菱形四条边相等的性质,构造直角三角形DEC,从而利用30°角所对直角边等于斜边一半可求出∠DCE,进而可得出答案.【题目详解】解:设菱形的边长为a,高为h,则依题意,4a=8h,即a=2h,过点D作BC边上的高,与BC的延长线交于点E,∵a=2h,即DC=2DE,∴∠DCE=30°,∴菱形的较大内角的外角为30°,∴菱形的较大内角是150°.故答案为:C.【题目点拨】此题考查菱形的知识,熟悉菱形的性质,及一些特殊的直角是解题的关键,画出图形再解题有助于理清思路.4、D【解题分析】
解:∵折叠
∴∠DAF=∠FAC,AD=AO,BE=EO,
∵AECF是菱形
∴∠FAC=∠CAB,AOE=90°
∴∠DAF=∠FAC=∠CAB
∵DABC是矩形
∴∠DAB=90°,AD=BC
∴∠DAF+∠FAC+∠CAB=90°
∴∠DAF=∠FAC=∠CAB=30°
∴AE=2OE=2BE
∵AB=AE+BE=3
∴AE=2,BE=1
∴在Rt△AEO中,AO==AD
∴BC=
故选D.5、C【解题分析】
根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.【题目详解】解:4的平方根是±2,①是假命题;有两边及其夹角相等的两个三角形全等,②是假命题;连结任意四边形各边中点的四边形是平行四边形,③是真命题;所有的直角都相等,④是真命题.故选C.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、C【解题分析】
根据中心对称图形的定义:平面内,如果把一个图形绕某一点旋转180后能与原图形重合,这个图形就叫做中心对称图形,即可判断.【题目详解】解:根据中心对称图形的定义,A.不是中心对称图形;B.不是中心对称图形;C.是中心对称图形,它的对称中心是正方形对角线的交点;D.不是中心对称图形;故选C.【题目点拨】本题考查中心对称图形的识别,熟记中心对称图形的定义是解题的关键.7、C【解题分析】
根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【题目详解】如图,四边形ABCD是菱形,且E.
F.
G、H分别是AB、BC、CD、AD的中点,
则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.
故四边形EFGH是平行四边形,
又∵AC⊥BD,
∴EH⊥EF,∠HEF=90°,
∴边形EFGH是矩形.
故选:C.【题目点拨】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.8、D【解题分析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【题目详解】作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,∴=5,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=2,∴DE=AD−AE=5−2=3,∴CD==,∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,故选D.【题目点拨】此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算9、B【解题分析】
根据平移的性质可得DE=AB=4,BC-BE=6-2=4,然后根据等边三角形的定义列式计算即可得解.【题目详解】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,
∴DE=AB=4,BC-BE=6-2=4,
∵∠B=∠DEC=60°,
∴△DEC是等边三角形,
∴DC=4,
故选:B.【题目点拨】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.10、B【解题分析】
先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.【题目详解】解:解分式方程得:x=﹣,∵x是整数,∴a=﹣3,﹣2,1,3;∵分式方程有意义,∴x≠0或2,∴a≠﹣3,∴a=﹣2,1,3,∵直线y=3x+8a﹣17不经过第二象限,∴8a﹣17≤0∴a≤,∴a的值为:﹣3、﹣2、﹣1、1、2,综上,a=﹣2,1,和为﹣2+1=﹣1,故选:B.【题目点拨】本题主要考查了一次函数的性质以及分式方程的解的知识,解题的关键是掌握根的个数与系数的关系以及分式有意义的条件,此题难度不大.11、A【解题分析】
点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【题目详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=AB×BC=×4×5=10故选A.【题目点拨】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.12、D【解题分析】
根据多边形的内角和公式,列式计算即可得解.【题目详解】解:这个正八边形每个内角的度数=×(8-2)×180°=135°.故选:D【题目点拨】本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.二、填空题(每题4分,共24分)13、.【解题分析】
由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.【题目详解】解:原式=,
故答案为:.【题目点拨】本题考查约分,正确找出公因式是解题的关键.14、1【解题分析】
根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.【题目详解】解:如图:
由题意得:AB=AC=10cm,BC=11cm,
作AD⊥BC于点D,则有DB=BC=8cm,
在Rt△ABD中,AD==1cm.
故答案为1.【题目点拨】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.15、1【解题分析】
首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.【题目详解】∵AD是∠BAC的平分线,
∴∠FAG=∠FAC,
∵CG⊥AD,
∴∠AFG=∠AFC=90°,
在△AFG和△AFC中,,
∴△AFG≌△AFC,
∴FG=FC,AG=AC=4,
∴F是CG的中点,
又∵点E是BC的中点,
∴EF是△CBG的中位线,∴.故答案为:1.【题目点拨】本题考查了全等三角形的判定以及三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.16、y=2x+1.【解题分析】
根据“上加下减”的原则进行解答.【题目详解】直线y=2x向上平移1个单位所得的直线解析式是y=2x+1.故答案为y=2x+1.【题目点拨】本题考查了一次函数的平移,熟练掌握平移原则是解题的关键.17、y=3x-4【解题分析】试题分析:根据一次函数的平移的性质:左减右加,上加下减,向下平移4个单位长度,可知y=3x-4.考点:一次函数的图像的平移18、【解题分析】
根据题意设AB=x米,则BC=(30-3x)m,利用矩形面积得出答案.【题目详解】解:设AB=x米,由题意可列方程为:x(30-3x)=1.故答案为:x(30-3x)=1.【题目点拨】此题主要考查了由实际问题抽象出一元二次方程,正确表示出BC的长是解题关键.三、解答题(共78分)19、(1)见解析;(2)见解析.【解题分析】
(1)以D点为圆心,线段BD的长度为半径交AB于点E,分别以E,B为圆心,大于的长度为半径作圆,交于一点,连接D和该交点的直线,交AB于F,则直线DF为所求.(2)设CD=a,则BD=a,求出AB,再由面积相等求出DF的长度,得到DF=CD,从而可证明结论.【题目详解】解:(1)如右图所示;(2)证明:设CD=a,则BD=a,∵在△ABC中,AC=BC,∠C=90°,∴AC=a+=(1+)a,∴AB=()a,∵,解得,DF=a,∴DC=DF=a,∵DC⊥AC,DF⊥AB,∴AD是△ABC的角平分线.【题目点拨】本题第一问主要考查中垂线的画法,第二问主要考查角平分线的证明20、(1)见解析;(2)①7;②1.【解题分析】
(1)根据平行四边形的性质得出CF平行ED,再根据三角形的判定方法判定△CFG≌△EDG,从而得出FG=CG,根据平行四边形的判定定理,即可判断四边形CEDF为平行四边形.(2)①过A作AM⊥BC于M,根据直角三角形边角关系和平行四边形的性质得出DE=BM,根据三角形全等的判定方法判断△MBA≌△EDC,从而得出∠CED=∠AMB=90°,根据矩形的判定方法,即可证明四边形CEDF是矩形.②根据题意和等边三角形的性质可以判断出CE=DE,再根据菱形的判定方法,即可判断出四边形CEDF是菱形.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=1时,四边形CEDF是菱形,理由是:∵AD=10,AE=1,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:1.【题目点拨】本题考查了平行四边形、矩形、菱形的判定方法,平行四边形的性质和三角形全等的判定和性质,解决本题的关键是正确理解题意,能够熟练掌握平行四边形、矩形、菱形的判定方法,找到各个量之间存在的关系.21、(1)y=-2x+1;(2)见解析.【解题分析】
(1)将点(2,-3)和(-1,3)代入y=kx+b,运用待定系数法即可求出该一次函数的解析式;(2)经过两点(2,-3)和(-1,3)画直线,即可得出这个一次函数的图象;【题目详解】解:(1)∵一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3),∴;解得:∴该一次函数的解析式为y=-2x+1;(2)如图,经过两点(2,-3)和(-1,3)画直线,
即为y=-2x+1的图象;【题目点拨】本题主要考查了运用待定系数法求一次函数的解析式,一次函数的性质,属于基础知识,利用图象与坐标交点作出图象是解题关键,同学们应熟练掌握.22、(1)、;(2)详见解析;(3)平均数:16;众数:10;中位数:15;(4)608.【解题分析】
(1)由元的人数及其所占百分比可得总人数,用元人数除以总人数可得m的值;(2)总人数乘以元对应百分比可得其人数,据此可补全图形;(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(4)根据统计图中的数据可以估计该校本次活动捐款金额为元的学生人数.【题目详解】(1)本次接受随机抽样调查的学生人数为人.∵.故答案为、;(2)元的人数为,补全图形如下:(3)本次调查获取的样本数据的平均数是:(元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元;(4)估计该校本次活动捐款金额为元的学生人数为人.【题目点拨】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.23、(1)89分;(2)86;(3)甲的综合成绩:89.4分,乙的综合成绩:86.4分,丁的综合成绩为87.4分,以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.【解题分析】
(1)根据中位数的意义,将四个数据排序后,处在第2、3位的两个数的平均数即为中位数,
(2)根据加权平均数的计算方法,列方程求解即可,
(3)依据加权平均数的计算方法,分别计算甲、乙、丁的综合成绩,最后比较产生前两名的候选人.【题目详解】解:(1)面试成绩排序得:86,88,90,92,处在第2、3位两个数的平均数为(88+90)÷2=89,因此中位数是89,
答:四名候选人的面试成绩的中位数是89分;
(2)由题意得:70%x+90×30%=87.2,
解得:x=86,
答:表格中x的值为86;
(3)甲的综合成绩:90×70%+88×30%=89.4分,乙的综合成绩:84×70%+92×30%=86.4分,
丁的综合成绩为:88×70%+86×30%=87.4分,
处在综合成绩前两位的是:甲、丁.
∴以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.【题目点拨】本题考查中位数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国四苯硼钠行业调查报告
- 2025年中国电网改造市场评估分析及投资发展盈利预测报告
- 2025年中国激光功率监视器行业市场发展前景及发展趋势与投资战略研究报告
- 脑梗死护理指南
- 理财培训课件
- 2025-2030年中国140g瓦楞纸箱行业深度研究分析报告
- 中国浓缩鱼油软胶囊行业市场深度研究及投资战略规划建议报告
- 切朴机行业深度研究分析报告(2024-2030版)
- 中国六角钻尾钉行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国硅频率控制器行业市场全景评估及投资前景展望报告
- 运动改造大脑阅读记录
- H 30014-2013 生产区域吊装作业安全规范
- DL∕T 2011-2019 大型发电机定子绕组现场更换处理试验规程
- 从黄土高原视角品黄河生态变迁智慧树知到期末考试答案章节答案2024年西北工业大学
- 电通量高斯定理课件
- 广东省东莞市2023-2024学年高二下学期7月期末英语试题
- 2024年云南省职业院校技能大赛(中职组)植物嫁接赛项考试题库(含答案)
- 河北省建设项目概算其他费用定额
- 肿瘤科护理组长竞聘
- 论马克思主义社会科学方法论在音乐中的意义
- 薛氏医案所载伤寒钤法总结
评论
0/150
提交评论